Уравнение
план-конспект урока по алгебре (6 класс) на тему
Предварительный просмотр:
1. Намчан Жанна Хемчикеевна, учитель математики МБОУ СОШ с.Ак-Тал Чеди-Хольского кожууна кожууна Республики Тыва
2. Уравнение
3. Урок математики в 6 классе, 45 минут
4. Учащиеся должны уметь правильно излагать свои мысли, понимать смысл поставленной задачи
5. Системно- деятельностный урок
6. Цель урока:
создание условий для получения и осмысления учениками новых знаний о способах решения уравнений, систематизация теоретического материала по указанной теме, отработка навыка решения уравнений различными методами.
7. Задачи:
Образовательные (формирование познавательных УУД):
повторить решение уравнений на нахождение неизвестного множителя, закрепить примеры равносильных преобразований уравнений, алгоритм решения уравнения, используя перенос слагаемых из одной части уравнения в другую; извлекать необходимую информацию из прослушанного материала; структурировать информацию в виде записи выводов и определений.
Воспитательные (формирование коммуникативных и личностных УУД): умение слушать и вступать в диалог; формировать внимательность и аккуратность в вычислениях; воспитывать чувство взаимопомощи, уважительное отношение к чужому мнению, культуру учебного труда, требовательное отношение к себе и своей работе; развивать у учащихся умение работать индивидуально и в группах.
Развивающие (формирование регулятивных УУД): самостоятельно ставить новые учебные задачи путем задавания вопросов о неизвестном; планировать собственную деятельность, определять средства для ее осуществления; способствовать развитию творческой активности учащихся.
Планируемые результаты обучения.
Предметные: уметь в процессе реальной ситуации использовать понятия «уравнение», «равенство», «корень уравнения»; познакомиться со свойствами уравнений; новым способом решения уравнений; отрабатывать умение решать уравнения.
Регулятивные: самостоятельно ставить новые учебные задачи путем задавания вопросов о неизвестном; планировать собственную деятельность, определять средства для ее осуществления.
Познавательные: извлекать необходимую информацию из прослушанного материала; структурировать информацию в виде записи выводов и определений.
Коммуникативные: умение работать в парах, слушать собеседника и вести диалог, аргументировать свою точку зрения; эффективно сотрудничать и способствовать продуктивной кооперации.
Личностные: умение правильно излагать свои мысли, понимать смысл поставленной задачи.
Структура урока:
1) Организационный этап.
2) Мотивация учебной деятельности учащихся.
3) Постановка цели и задач урока. Актуализация знаний.
4) Первичное усвоение новых знаний.
5) Первичное осмысление и закрепление знаний.
6) Физкультминутка.
7) Самостоятельная работа с самопроверкой по эталону.
8) Включение в систему знаний и повторение.
9) Информация о домашнем задании.
10) Рефлексия.
Ход урока:
1.Самоопределение к учебной деятельности (организационный момент).
Задача: Создать благоприятный психологический настрой на работу.
Организация учебного процесса на 1 этапе:
Деятельность учителя | Деятельность ученика | УУД |
Учитель приветствует учащихся, проверяет их готовность к уроку. Организует внимание детей. Здравствуйте, дорогие ребята! Садитесь! Я рада приветствовать Вас на уроке математики и прошу обратить внимание на доску. «Учиться надо весело…. Чтобы усваивать знания, надо переваривать их с аппетитом» А. Франц. Как вы понимаете это высказывание? Согласны ли вы с ним? Абсолютно верно! Это высказывание будет девизом нашего сегодняшнего урока! | Учащиеся готовы к началу работы. Включаются в деловой ритм урока. Читают высказывание и предлагают варианты ответов. Примерный ответ ученика: На уроке не место скуке и унынию. Мы будем активно и весело работать: мыслить, рассуждать, исследовать и только так получать знания по математике! | Личностные: самоопределение к учебной деятельности. Регулятивные: целеполагание как постановка учебной задачи. Коммуникативные: планирование учебного сотрудничества с учителем и сверстниками. |
2. Мотивация учебной деятельности учащихся.
Задачи:
вызвать эмоциональный настрой и познавательный интерес к теме;
повторение изученного материала, необходимого для «открытия нового знания» и выявление затруднений в индивидуальной деятельности каждого учащегося.
Организация учебного процесса на 2 этапе:
Деятельность учителя | Деятельность ученика | УУД |
Учитель: Новые знания нам будет очень трудно осваивать без умения быстро и верно считать, поэтому, как всегда, начнем урок с устного счета: 1.Раскройте скобки: -2(х – 5+а); 8(у+3-с); х ( - у+7 – с); -12(-2a+5b-4c+3d); (-3a-2b+5c+4d) ∙ (-15) 2. Откройте тетради, запишите дату, классная работа. | 1.Решают в уме, один из учеников проговаривает ответ 2. Делают записи в тетради. | Коммуникативные ууд: умение с достаточной полнотой и точностью выражать свои мысли в соответствии с заданиями. |
3. Актуализация знаний. Постановка цели и задач урока.
Задачи: организовать самостоятельное формулирование вопросов и постановку цели и задач урока; организовать самостоятельное планирование и выбор методов поиска информации.
Деятельность учителя | Деятельность ученика | УУД |
Учитель: Обратите внимание на записи. b – 48:8 y ∙ 10=1800 600 +1800: х 600 ∙ х=1800:3 a ∙ (56 - 40) у∙ 100 =600∙ 3 k: (180:90) 600 ∙ х=1800 - Внимательно их изучите и ответьте на вопросы. - На какие две группы можно разделить написанное? - Как можно назвать каждую из групп? - Интересна ли для нас 1 группа: выражения? - А вторая? Почему? – Кто догадался, какая тема сегодняшнего урока? - Исходя из названия темы, давайте сформулируем цель нашего урока. - Для того чтобы достичь цели урока, какие задачи нам надо поставить? - Где можно узнать информацию по данной теме? | Учащиеся внимательно смотрят на записи, отвечая на вопросы:
4)Да, потому что уравнения можно решить. Ребята объявляют тему урока и записывают в тетради: « Решение уравнений». Формулируют цель: познакомиться с разными видами уравнений; научиться их решать.
Формулируют задачи:
Называют источники информации: учебник, учитель | Личностные УУД: проявлять интерес к новому содержанию, осознавая неполноту своих знаний Познавательные УУД: формулировать информационный запрос Регулятивные УУД: определять цели учебной деятельности; планировать, т.е. составлять план действий с учетом конечного результата. Регулятивные УУД: - целеполагание как постановка учебной задачи ; |
4. Первичное усвоение новых знаний.
Задача: организовать осмысленное восприятие новой информации.
Деятельность учителя | Деятельность ученика | УУД |
1.Подготовительный этап. – А что значит «решить уравнение»? – Итак, уравнение – это равенство. А в жизни мы встречаемся с понятием равенство? Актуализация и постановка проблемы. – Давайте разберем такой пример. Весы находятся в равновесии. Что произойдет, если с одной чаши весов убрать груз? – А что надо сделать, чтобы весы снова оказались в равновесии? – Это свойство «весов» нам еще пригодится. - Давайте вернемся к началу нашего урока. В тетрадях запишем уравнение и решим его. Какие существуют способы решения данного уравнения? [3] - Хорошо! Давайте сначала решим уравнение, применив распределительное свойство умножения: 1 способ 8(x-2) = 40 8x-16=40 8x=40+16 8x=56 x=56:8 x=7 - А сейчас по правилу отыскания неизвестных компонентов 2 способ 8(x-2) = 40 - Что неизвестно в уравнении? - Как найти неизвестный множитель? x-2=40:8 x-2=5 x=5+2 x=7 -Что мы получили в итоге? - Что называется корнем уравнения? -Число 7 является корнем уравнения x-2=5 и уравнения8(x-2) = 40, так как 7-2=5 и 8(7-2)=40. - Как из первого уравнения можно получить второе? Мы с вами убедились, что корнем этих двух уравнений является одно и то же число. Поэтому: Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и тоже число, не равное нулю.[1] 2. Снова вернемся к началу урока и теперь рассмотрим второе уравнение: x+8= - 15. Как его можно решить? Это уравнение решается с использованием зависимостей между компонентами и результатами математических действий. Но изучение отрицательных чисел дает возможность решить эти уравнения иначе. - Вспомним, чему равна сумма противоположных чисел? - Как можно получить в левой части уравнения только с x? - Рассмотрим решение этих уравнений. x+8= - 15 x+8-8= -15-8 x=-23 - Мы видим, что слагаемые без переменной перешли из левой части уравнения в правую с противоположным знаком. - А сейчас рассмотрим третье уравнение и решим его:5х=2х+6 - Чем данное уравнение отличается от предыдущего? - Как его можно решить? - Нужно получить такое уравнение, чтобы слагаемые с x были только слева. Что для этого необходимо сделать? 5х=2х+6 5x+ (-2x) = 2х+6+ (-2x) 5x+ (-2x) = 6 3x=6 x=6:3 x=2 - Хорошо! Давайте рассмотрим такой вопрос: Вы собираетесь за границу. О чем в первую очередь вы должны подумать, когда пересечете границу? - Правильно, пересекая границу, вам обязательно надо поменять паспорт. - Давайте представим, что знак «=» - это граница, а знак числа – это ваш паспорт. Когда мы пересекаем границу, меняем паспорт, то есть, если число переносим из одной части в другую, мы должны поменять знак. [3] Корни уравнения не изменяются, если какое – нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак. .[1] | 1. Отвечают на вопросы: 1)Найти все значения неизвестных, при которых оно обращается в верное равенство или установить, что таких значений нет. 2) Называют возможные варианты, например, при взвешивании 3) Чаша с гирями перевесит. 4) Убрать гири. 5)Записывают уравнение в тетрадях, предлагают варианты решения. 6)Вспоминают распределительное свойство умножения и решают уравнение в тетрадях, комментируя вместе с учителем ход решения. 7)Отвечают на вопросы: Множитель 8)Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель 9) Корень уравнения x=7 Корнем уравнения называют то значение неизвестного, при котором это уравнение обращается в верное равенство 10) Это уравнение можно получить, разделив обе части данного уравнения на 8 или умножив обе части на 1/8. 11) Записывают в тетрадях вывод. 2. 1)Записывают уравнение в тетрадях, предлагают возможные варианты, решая уравнение 2) Нулю 3)Прибавить или отнять числа, противоположные числам в левой части. 4) Неизвестное есть и в правой и в левой части уравнения. 5) Предлагают варианты решения уравнения 6) Для этого надо к обеим частям уравнения прибавить (-2 x). Решают уравнение 7) Слушают, отвечают на вопросы. 8) Записывают в тетрадях вывод. | Познавательные УУД: извлекать необходимую информацию из прослушанных текстов; структурировать знания; Коммуникативные УУД: вступать в диалог, с достаточной полнотой и точностью выражать свои мысли. Предметные УУД: давать определения новым понятиям темы; называть способы решения уравнения. |
5. Первичное осмысление и закрепление знаний.
Задачи: обеспечить осмысленное усвоение и закрепление знаний; выявление пробелов первичного осмысления изученного материала, коррекция выявленных пробелов, обеспечение закрепления в памяти детей знаний и способов действий, которые им необходимы для самостоятельной работы по новому материалу.
Организация учебного процесса на 5 этапе:
Деятельность учителя | Деятельность ученика | УУД |
1. Учитель: Принято при решении уравнений переносить слагаемые так, чтобы в левой части уравнения были неизвестные числа, а в правой - известные числа. Решить №1314 и 1315 с комментированием на месте. | - Решают в тетрадях, один из учеников комментирует решение с места | Предметные УУД: Различать способы решения уравнений, правильно формулировать ход решения уравнений, находить неизвестные компоненты, применять на практике полученные выводы Познавательные УУД: анализировать и сравнивать объекты, подводить под понятие; |
6. Физкультминутка.
Дружно с вами мы решали и про числа рассуждали,
А теперь мы дружно встали, свои косточки размяли.
На счет раз кулак сожмем, на счет два в локтях сожмем.
На счет три — прижмем к плечам, на 4 — к небесам
Хорошо прогнулись, и друг другу улыбнулись
Про пятерку не забудем — добрыми всегда мы будем.
На счет шесть прошу всех сесть.
Числа, я и вы, друзья, вместе дружная семья.
7. Самостоятельная работа с самопроверкой по эталону.
Задачи: организовать выполнение учащимися самостоятельной работы на новое знание;
- организовать самопроверку по эталону;
- организовать выявление места и причины затруднений, работу над ошибками.
Организация учебного процесса на 7 этапе:
Деятельность учителя | Деятельность ученика | УУД |
Организует выполнение учащимися самостоятельной работы на новое знание. Вариант 1. 1.Решите уравнения: а) -8х = 48; б) 16х – 24 = 9 + 5х; в) 1 – 2х = 12х + 1; г)24х – 18= 27х - 24; Вариант 2. 1.Решите уравнения: а) 9х = -36; б) 18х – 21 = 6 + 9х; в) 7 – 4х = 14х + 7; г)19х – 13= 23х - 21; Организует самопроверку по эталону. Организует выявление места и причины затруднений, работу над ошибками. - У кого всё правильно? - У кого есть ошибки? - В каком месте ошибки? - В чём причина? - Исправьте ошибки. | Выполняют задание самостоятельно, выбирая, сколько уравнений решать. Выполняют самопроверку по эталону. Фиксируют «!», «?». Оценивают свою работу (по 1 баллу за каждое уравнение). 4 балла - оценка «5»; 3 балла - оценка «4»; 2 балла - оценка «3»; 1-0 баллов - надо еще поработать. Эталон для самопроверки: Вариант 1. а) -8х = 48; х =48:(-8); х= -6. б) 16х – 24 = 9 + 5х; 16х -5х = 9 +24; 11х =33; х = 33:11; х =3. в) 1 – 2х = 12х + 1; - 2х – 12х =1 - 1; - 14х = 0; х=0. г)24х – 18= 27х - 24; 24х – 27х =- 24 +18; - 3х =- 6; х = -6:(-3); х =2. Вариант 2. а) 9х = -36; х = -36:9; х = - 4. б) 18х – 21 = 6 + 9х; 18х - 9х =6 +21; 9х = 27; х =3. в) 7 – 4х = 14х + 7; - 4х – 14х =7 – 7; - 18х =0; х = 0. г)19х – 13= 23х - 21; 19х – 23х = -21 +13; -4х =-8; х = 2. Называют с помощью учителя место своего затруднения, причину, исправляют ошибки. | Регулятивные УУД: Планировать своё действие в соответствии с поставленной задачей ; Вносить необходимые коррективы в действие после его завершения на основе его оценки и учёта характера сделанных ошибок. |
8. Включение в систему знаний и повторение.
Задачи: закреплять умение решать уравнения, применяя свойства уравнений.
Организация учебного процесса на 8 этапе:
Деятельность учителя | Деятельность ученика | УУД |
Решить уравнение №1316( а- г) на доске и в тетрадях, проговаривая правила. 3. Решить уравнение №1319(а;б) с комментариями на месте. | 1)Осмысливают и приступают применять новый способ решения на практике. 2)Делают записи в тетрадь. После выполнения задания сверяют с доской. Один из учеников решает у доски с комментарием. 3)Работают в парах.Решают самостоятельно, сверяют друг с другом, затем с доской. Один из учеников решает у доски. | Предметные УУД: Различать способы решения уравнений, правильно формулировать ход решения уравнений, находить неизвестные компоненты, применять на практике полученные выводы Познавательные УУД: анализировать и сравнивать объекты, подводить под понятие; |
9. Информация о домашнем задании.
Задачи: Обеспечение понимания детьми цели, содержания и способов выполнения домашнего задания.
Организация учебного процесса на 9 этапе:
Деятельность учителя | Деятельность ученика | УУД |
- На доске: Домашнее задание: п. 42, выучить правила; решить №1342(а; б; в; г) – на оценку «3», №1346 – на оценку «4», №1349– на оценку «5» - Ваши вопросы по домашнему заданию. | 1) Ребята записывают домашнее задание в дневниках. 2) Просматривают домашнее задание, задают вопросы | Регулятивные УУД: констатировать необходимость продолжения действий Познавательные УУД: решать различные виды уравнений |
10. Рефлексия деятельности на уроке.
Задачи: зафиксировать новое содержание; осознание учащимися своей учебной деятельности, самооценка результатов деятельности своей и всего класса.
Организация учебного процесса на 10 этапе:
Деятельность учителя | Деятельность ученика | УУД |
- А теперь подведем итоги: Что мы хотели узнать? Что мы узнали? На все ли вопросы мы получили ответы? - Давайте еще раз вспомним определение уравнения, корня уравнения. -Кто желает сформулировать правило решения уравнений нового вида? -Что было самым сложным на уроке, а самым интересным? -Кому не понадобится помощь при выполнении домашнего задания по этой теме? Оценить отдельных учащихся | Проводят самоанализ, отвечают на вопросы; вспоминают правила; определение уравнения, корня уравнения. | Познавательные ууд: -рефлексия способов и условий действия, контроль и оценка процесса и результатов деятельности; Регулятивные УУД: - оценка - выделение и осознание учащимся того, что уже усвоено и что еще подлежит усвоению, осознание качества и уровня усвоения. Коммуникативные: умение с достаточной полнотой и точностью выражать свои мысли; владение монологической и диалогической формами речи в соответствии с грамматическими и синтаксическими нормами русского языка. |
По теме: методические разработки, презентации и конспекты
Иррациональные уравнения. Показательные уравнения.Логарифмические уравнения.
Тип урока: Урок повторения. Форма урока – мастерская (групповая работа)Форма урока работа в группах. Коллективная форма работы, которая позволяет создать ситуацию взаимообучения учащихся и сущест...
Итоговый контроль по темам № 1, 2, 3, 4: «Рациональные уравнения. Иррациональные уравнения. Квадратное уравнение и приложения теоремы Виета. Исследование квадратного трехчлена»
Уважаемые коллеги!Актуальной задачей на сегодняшний день является качественная подготовка учащихся к государственной итоговой аттестации (ГИА) и единому государственному экзамену (ЕГЭ) по математике, ...
Тема 15. ИТОГОВЫЙ КОНТРОЛЬ ПО ТЕМАМ 9-14: "Показательные уравнения. Показательно-степенные уравнения. Показательные неравенства. Преобразования и вычисления логарифмических выражений. Логарифмические уравнения. Логарифмические неравенства".
Уважаемые коллеги!Актуальной задачей на сегодняшний день является качественная подготовка учащихся к единому государственному экзамену (ЕГЭ) по математике, а также абитуриентов к вступител...
Тема 18. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ. Уравнения, решаемые понижением степени. Однородные уравнения и приводимые к ним. Универсальная подстановка.
Уважаемые коллеги!Актуальной задачей на сегодняшний день является качественная подготовка учащихся к единому государственному экзамену (ЕГЭ) по математике, а также абитуриентов к вступительным э...
Методические рекомендации к изучению темы: « Решение квадратных уравнений» с применением теоремы Виета для решения приведенного квадратного уравнения и полного квадратного уравнени
Решать квадратные уравнения учащимся приходится часто в старших классах, Решение иррациональных, показательных , логарифмических ,тригонометрических уравнений часто сводится к решени...
Учебный модуль по теме " Уравнение. Решение уравнений.Решение текстовых задач с помощью уравнений."
Данный учебный модуль разработан в рамках персонализированного обучения .Модуль расчитан на 12 часов. Содержитз адания для прохождения уровней цели 2.0,,3.0 и 4.0.В модуле представле...
Презентации по теме "Системы двух линейных уравнений", "Метод подстановки для решения систем уравнений", "Метод сложения для решения систем уравнений" .
Презентации проедполагает использование при проведении онлайн урока по теме "Системы двух линейных уравнений", "Метод подстановки для решения систем уравнений", "Метод сложени...