«Урок-презентация» Решение тригонометрических уравнений, приводимых к алгебраическим
презентация к уроку по алгебре (10 класс) на тему

Владимирова Регина Валерьевна

         Урок «Решение тригонометрических уравнений, приводимых к алгебраическим». Урок входит в раздел «Тригонометрические функции» курса алгебры и начала анализа – 10 класс. Это урок объяснения нового материала, ему предшествует тема: «Решение простейших тригонометрических уравнений».

      На уроке используется компьютерная презентация, цель которой помочь учащимся лучше разобраться в учебном материале. Презентация не громоздкая, она состоит из 22 слайдов. На слайдах представлен теоретический материал урока, подробно разобраны примеры решения тригонометрических уравнений. Также представлена геометрическая задача, решение в которой сводится к тригонометрическому уравнению. Представлены задания для самостоятельной работы разного уровня и приведены ответы к заданиям. Все задания максимально приближены к вариантам Единого Государственного Экзамена по математике. Презентация также содержит справочный материал.

     Каждый слайд содержит гиперссылки, которые позволяют легко возвращаться от теоретического материала к примерам и заданиям. Слайды содержат минимум анимации, чтобы не отвлекать учащихся от основной задачи урока. Стоит также отметить, что данную компьютерную презентацию учащиеся могут использовать не только на данном уроке, но и дома в качестве справочного материала. 

Скачать:

ВложениеРазмер
Файл urok_trigonometricheskie_uravneniya.ppsx885.22 КБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Владимирова Р.В. учитель математики МБОУ «Гимназия № 94» Московского района г.Казани Решение тригонометрических уравнений, приводимых к алгебраическим «Каждая решенная мною задача становится образом, который служит впоследствии для решения других задач» Р.Декарт

Слайд 2

СОДЕРЖАНИЕ 1. Введение 2. Повторение Простейшие тригонометрические уравнения Частные случаи Задания для на повторение 4. Уравнения, приводимых к алгебраическим 5. Примеры решения уравнений 6. Использование тр.ур . при решении геометрических задач 7.Задания для самостоятельной работы 8.Краткий справочник формул 2

Слайд 3

Тригонометрические функции возникли в Древней Греции в связи с исследованиями в астрономии и геометрии. Отношения сторон в прямоугольном треугольнике, которые по существу и есть тригонометрические функции, встречаются уже в III в. до н.э. в работах Евклида, Архимеда и других. Современную форму тригонометрическим функциям и вообще тригонометрии придал Леонард Эйлер. Ему принадлежат определения тригонометрических функций и принятая в наши дни символика. 1 3 Введение Содержание

Слайд 4

ТРИГОНОМЕТРИЯ - математическая дисциплина, изучающая зависимость между сторонами и углами треугольника. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ , с помощью которых связываются элементы треугольника, изучаются в курсе математического анализа. ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ – это уравнения, в которых неизвестные являются аргументами тригонометрических функций. Введение 1 Содержание 4

Слайд 5

Решение простейших тригонометрических уравнений Если уравнение не имеет решения. Если Если уравнение не имеет решения. Если 2 Содержание 5

Слайд 6

Решение простейших тригонометрических уравнений Частные случаи 2 Содержание 6

Слайд 7

1. Решите уравнение: 1) 2) 3) 4) 2. Решите уравнение : 1) 2) 3) 4) 3. Укажите наименьший положительный корень уравнения 1) 2) 3) 4) Задания на повторение 2 Содержание 7

Слайд 8

Уравнения, приводимые к алгебраическим С помощью замены переменной можно привести тригонометрическое уравнение к алгебраическому. Рассмотрим несколько типов уравнений: Тип уравнения Замена Алгебраическое уравнение 4 Содержание 8 ПР №1 ПР №2 ПР №3 ПР №4

Слайд 9

Делаем обратную замену , Пример 1 Уравнения, приводимые к алгебраическим Сделаем замену переменной Получаем : , 5 Содержание 9 Теория

Слайд 10

Получаем : , Уравнения, приводимые к алгебраическим Сделаем замену переменной Применим основное тригонометрическое тождество 5 Пример 2 Содержание 10 Теория

Слайд 11

Пример 3 Уравнения, приводимые к алгебраическим Сделаем замену переменной Получаем : , 5 Содержание 11 Теория

Слайд 12

Получаем : , Пример 4 Уравнения, приводимые к алгебраическим Сделаем замену переменной 5 Содержание 12 Теория

Слайд 13

6 Решение геометрической задачи Биссектриса одного из острых углов прямоугольного треугольника в шесть раз короче гипотенузы. Найдите острые углы этого треугольника. Содержание 13

Слайд 14

ДАНО: треугольник АВС угол С –прямой ВД- биссектриса НАЙТИ : , РЕШЕНИЕ: Пусть Применив теорему синусов к треугольнику АВД, найдем, что Решение задачи Решение геометрической задачи Учитывая условия задачи, получаем: 6 14

Слайд 15

Задача продолжение Решение геометрической задачи ОТВЕТ: 6 Решение задачи сводится к решению тригонометрического уравнения Решаем квадратное уравнение относительно ,получаем Содержание 15

Слайд 16

Задания для самостоятельной работы Вариант № 1 Вариант № 2 1) 1) 2) 2) 3) 3) 4) 4) 5) 5) Уравнения, приводимые к алгебраическим 7 Содержание 16 Ответы

Слайд 17

Ответы самостоятельной работы Вариант № 1 Вариант № 2 1) 1) 2) 2) 3) 3) 4) 4) 5) 5) Уравнения, приводимые к алгебраическим 7 Содержание 17 Задания

Слайд 18

Краткий справочник формул 8 Нахождение тригонометрических функций по единичной окружности Основные тригонометрические тождества Формулы двойного аргумента Формулы сложения Формулы преобразования суммы в произведение Формулы преобразования произведения в сумму Содержание 18

Слайд 19

Единичная окружность . . . 3 Содержание Задания на повторение 19 ПР №1 ПР №2 ПР №3 ПР №4 Задания с.р

Слайд 20

2. Основные тригонометрические тождества 3.Формулы двойного аргумента 1 7 2 8 3 9 4 10 5 11 6 12 Краткий справочник формул 8 20

Слайд 21

Краткий справочник формул 4. Формулы сложения 1 2 3 4 5 6 7 8 8 55 19

Слайд 22

Краткий справочник формул 5. Формулы преобразования суммы в произведение 1 2 3 4 6. Формулы преобразования произведения в сумму 1 2 3 8 22


По теме: методические разработки, презентации и конспекты

"Тригонометрические уравнения, сводящиеся к алгебраическим. Однородные уравнения", 10 класс (профильный)

Материал презентации был представлен на защите урока на Всероссийском  конкурсе "Мой лучший урок" (2 место)...

"Тригонометрические уравнения, сводимые к алгебраическим"

Данные задания помогут учащимся при подготовке к ЕГЭ, а также на уроках по теме "Тригонометрические уравнения" для закрепления умений и навыков....

Методическая разработка урока на тему: Решение показательных уравнений, приводимых к квадратным, методом замены переменной.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА. На уроке рассматривались показательные уравнения, которые можно решить способом замены переменных. Класс, в котором проводился урок, характеризуется неустойчивостью внимани...

Рабочая программа элективного курса "Алгебра плюс: полиномиальные алгебраические уравнения. Нестандартные способы решения тригонометрических уравнений, неравенств, систем"

Программа состалена на основе авторской программы элективного курса "Алгебра плюс: элементарная алгебра с точки зрения высшей математики"....

N16 Решение тригонометрических уравнений, приводимых к квадратному. за 2.05.20 для группы МЖКХ1 и за 4.05.20 для группы ПК1

Задание:1. Сделать конспект краткого справочного материала.2. Оформить решение типовых задач.3. Выполнить самостоятельно N1-N8....

26.04.2021 ПК1 Тема: "Решение тригонометрических уравнений, приводимых к квадратному".

Задание:1. Выполнить конспект краткого справочного материала по теме: " Решение тригонометрических уравнений, приводимых к квадратному".2. Оформить упражнения с решениями в тетради.3. Решить...