рабочая программа по математике 8 класс
рабочая программа по алгебре (8 класс) на тему
рабочая программа по алгебре 8 класс
Скачать:
Вложение | Размер |
---|---|
rab.programma_algebra_8_klass_2.doc | 241.5 КБ |
Предварительный просмотр:
Муниципальное казенное общеобразовательное учреждение
Болчаровская средняя общеобразовательная школа
утверждаю
Директор школы:___________________
С.В. Яворских
от «____» _________ 20__г
ПО алгебре
Класс : ______ ___8___________________
по учебнику: Алгебра 8 КЛАСС ___
ИЗДАТЕЛЬСТВО: Москва «Просвещение» ГОД ИЗДАНИЯ : 2009
Авторы учебника :
Ю.Н.МАКАРЫЧЕВ,Н.Г.МИНДЮК,К.И.НЕШККОВ,С.Б.СУВОРОВА,С.А. ТЕЛЯКОВСКИЙ
составитель:
учитель информатики, математики
Конради Елена Валерьевна
2014 – 2015 учебный год
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая программа, составленная на основе примерной программы основного общего образования по математике, соответствует БУП, ориентирована на учащихся 8 класса и реализуется на основе следующих документов:
Нормативные документы и программы:
- Примерная программа основного общего образования по математике. Математика. Содержание образования. Сборник нормативно-правовых документов и методических материалов. - М.: Вентана-Граф, 2008
- Федерального компонента государственного стандарта основного общего образования по математике, утвержденного приказом Минобразования России от 5.03.2004 г. № 1089.
- Программы для общеобразовательных школ, гимназий, лицеев: Математика, 5 – 11 кл. / Сост. Г.М. Кузнецова, Н.Г. Миндюк. / 4-е изд., стереотип. М.: Дрофа, 2004. – 320 с.
- Алгебра. 7 – 9 классы: развернутое тематическое планирование по программе Ю.Н. Макарычева
Рабочая программа ориентирована на использование учебного комплекта:
1. Учебник: Алгебра: учеб. для 8 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; под ред. С. А. Теляковского. – 17-е изд. – М.: Просвещение, 2009.
2. Дидактические материалы:
- Алгебра: дидакт. Материалы для 8 кл./ Жохов В.И., Макарычев Ю.Н., Миндюк Н.Г. – 12-е изд., дораб. – М.: Просвещение, 2007.
- Жохов В. И. Дидактические материалы по алгебре. 8 класс / В. И. Жохов, Ю. Н. Макарычев, Н. Г. Миндюк. – М.: Просвещение, 2009.
- Капитонова Т. А. Алгебра. 8 класс. Проверочные и контрольные работы. – Саратов: Лицей, 2008.
3. Книга для учителя.
- Алгебра. 8 класс: поурочные планы по учебнику Ю. Н. Макарычева и др./ авт.-сост. Т. Л. Афанасьева, Л. А. Тапилина. – Волгоград: Учитель, 2008.
- Жохов В. И. Уроки алгебры в 8 классе: книга для учителя / В. И. Жохов, Г. Д. Карташева. – М.: Просвещение, 2009.
МЕТОДИЧЕСКАЯ ЛИТЕРАТУРА
- Федеральный перечень учебников, рекомендуемых Министерством образования Российской Федерации к использованию в общеобразовательном процессе в общеобразовательных учреждениях на 2014 – 2015 учебный год.
- Программы для общеобразовательных школ, лицеев и гимназий. Математика. Составители: Г. М. Кузнецова, Н. Г. Миндюк. М.: Дрофа, 2004 г.
- Математика. Еженедельное приложение к газете «Первое сентября»;
- Математика в школе. Ежемесячный научно-методический журнал.
СПИСОК ДОПОЛНИТЕЛЬНОЙ ЛИТЕРАТУРЫ ПО ВОПРОСАМ КОМБИНАТОРИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ.
1. Бернулли Я. О законе больших чисел. — М., 1986.
2. Бунимович Е. А., Булычев В. А. Основы статистики и вероятность. — М., 2004.
3. Виленкин Н. Я. Комбинаторика. — М., 1969.
4. Лютикас B. C. Факультативный курс по математике. Теория вероятностей. — М., 1990.
5. Мостеллер Ф. Пятьдесят занимательных вероятностных задач с решениями. М., 1985.
6. Плоцки А. Вероятность в задачах для школьников. — М., 1996.
для учащихся 7—9 кл. — М., 2005.
7. Шибасов Л. П., Шибасова З. Ф. За страницами учебника математики. — М., 1997, 2008.
Для обеспечения плодотворного учебного процесса предполагается использование информации и материалов следующих Интернет – ресурсов:
- Министерство образования РФ: http://www.ed.gov.ru/ ; http://www.edu.ru
- Тестирование online: 5 – 11 классы: http://www.kokch.kts.ru/cdo
- Сеть творческих учителей: http://it-n.ru/communities.aspx?cat_no=4510&tmpl=com ,
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
Основные развивающие и воспитательные цели
Развитие:
- ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- математической речи;
- сенсорной сферы; двигательной моторики;
- внимания; памяти;
- навыков само и взаимопроверки.
Формирование представлений об идеях и методах математики как универсального языка науки
и техники, средства моделирования явлений и процессов.
Воспитание:
- культуры личности, отношения к математике как к части общечеловеческой культуры,
понимание значимости математики для научно-технического прогресса;
- волевых качеств;
- коммуникабельности;
- ответственности.
Общая характеристика учебного предмета
Математическое образование в основной школе складывается из следующих компонентов: арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики.
Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.
Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов, для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.
Геометрия – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
В ходе освоения содержания курса учащиеся получают возможность:
- развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
- овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
- изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
- развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
- получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
- развить логическое мышление и речь – умениия логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
- сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Место курса «Алгебра» в учебном плане школы
На изучение учебного курса алгебры в 8 классе отводится 3 часа в неделю.
Курс рассчитан на 104 ч - (35 учебных недель).
Количество часов в 1-й четверти - 27 .
Количество часов во 2-й четверти - 21.
Количество часов в 3-й четверти – 31.
Количество часов в 4-й четверти - 25.
Теоретической основой данной программы являются:
- Системно-деятельностный подход: обучение на основе реализации в образовательном процессе теории деятельности, которое обеспечивает переход внешних действий во внутренние умственные процессы и формирование психических действий субъекта из внешних, материальных (материализованных) действий с последующей их интериоризацией
- Теория развития личности учащегося на основе освоения универсальных способов деятельности: понимание процесса учения не только как усвоение системы знаний, умений, и навыков, составляющих инструментальную основу компетенций учащегося, но и как процесс развития личности, обретения духовно-нравственного и социального опыта.
В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично – поисковый. На уроках используются элементы следующих технологий:
Задания для устного счета. Эти задания дают возможность в устном варианте отрабатывать различные вопросы теории и практики, применяя принципы наглядности, доступности. Их можно использовать на любом уроке в режиме учитель – ученик, взаимопроверки, а также в виде тренировочных занятий.
Тренировочные упражнения. Включают в себя задания с вопросами и наглядными ответами, составленными с помощью анимации. Они позволяют ученику самостоятельно отрабатывать различные вопросы математической теории и практики.
Использование компьютерных технологий в преподавании математики позволяет непрерывно менять формы работы на уроке, постоянно чередовать устные и письменные упражнения, осуществлять разные подходы к решению математических задач, а это постоянно создает и поддерживает интеллектуальное напряжение учащихся, формирует у них устойчивый интерес к изучению данного предмета. Для активизации работы на уроке предполагается применение имеющихся компьютерных продуктов: демонстрационный материал, задания для устного опроса учащихся, тренировочные упражнения.
Демонстрационный материал (слайды). Создается с целью обеспечения наглядности при изучении нового материала, использования при ответах учащихся. Применение анимации при создании такого компьютерного продукта позволяет рассматривать вопросы математической теории в движении, обеспечивает другой подход к изучению нового материала, вызывает повышенное внимание и интерес у учащихся.
Для обеспечения плодотворного учебного процесса предполагается использование информации и материалов Интернет – ресурсов.
Содержание учебного предмета
Рациональные дроби
Рациональная дробь. Основное свойство дроби, сокращение дробей.
Тождественные преобразования рациональных выражений. Функция и ее график.
Квадратные корни
Понятие об иррациональных числах. Общие сведения о действительных числах.
Квадратный корень. Понятие о нахождении приближенного значения квадратного корня.
Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни.
Функция у = √х, ее свойства и график.
Квадратные уравнения
Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных
уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим
рациональным уравнениям.
Неравенства
Числовые неравенства и их свойства. Почленное сложение и умножение числовых
неравенств. Погрешность и точность приближения. Линейные неравенства с одной
переменной и их системы.
Степень с целым показателем. Элементы статистики
Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения
об организации статистических исследований.
Повторение
ТРЕБОВАНИЯ К МАТЕМАТИЧЕСКОЙ ПОДГОТОВКЕ УЧАЩИХСЯ
Рациональные дроби
В результате изучения курса математики учащиеся должны:
- знать основное свойство дроби, рациональные, целые, дробные выражения;
- правильно употреблять термины «выражение», «тождественное преобразование»,
- понимать формулировку заданий: упростить выражение, разложить на множители, привести к общему знаменателю, сократить дробь;
- знать и понимать формулировку заданий: упростить выражение, разложить на множители, привести к общему знаменателю, сократить дробь, свойства обратной пропорциональности;
- осуществлять в рациональных выражениях числовые подстановки и выполнять соответствующие вычисления;
- выполнять действия сложения и вычитания с алгебраическими дробями, сокращать дробь;
- выполнять разложение многочлена на множители применением формул сокращенного умножения, выполнять преобразование рациональных выражений;
- осуществлять в рациональных выражениях числовые подстановки и выполнять соответствующие вычисления;
- выполнять действия умножения и деления с алгебраическими дробями, возводить дробь в степень, выполнять преобразование рациональных выражений;
- правильно употреблять функциональную терминологию (значение функции, аргумент, график функции), строить график обратной пропорциональности, находить значения функции y=k/x по графику, по формуле.
Квадратные корни
В результате изучения курса математики учащиеся должны:
- знать определения квадратного корня, арифметического квадратного корня, какие числа называются рациональными, иррациональными, как обозначается множество рациональных чисел; свойства арифметического квадратного корня;
- выполнять преобразование числовых выражений, содержащих квадратные корни;
- решать уравнения вида x2=а;
- находить приближенные значения квадратного корня;
- находить квадратный корень из произведения, дроби, степени;
- строить график функции и находить значения этой функции по графику или по формуле;
- выносить множитель из-под знака корня, вносить множитель под знак корня;
- выполнять преобразование выражений, содержащих квадратные корни.
Квадратные уравнения
В результате изучения курса математики учащиеся должны:
- знать, что такое квадратное уравнение, неполное квадратное уравнение, приведенное квадратное уравнение; формулы дискриминанта и корней квадратного уравнения, терему Виета и обратную ей;
- решать квадратные уравнения выделением квадрата двучлена;
- решать квадратные уравнения по формуле;
- решать неполные квадратные уравнения;
- решать квадратные уравнения с помощью теоремы, обратной теореме Виета;
- использовать теорему Виета для нахождения коэффициентов и свободного члена квадратного уравнения;
- решать текстовые задачи с помощью квадратных уравнений.
- знать какие уравнения называются дробно-рациональными, какие бывают способы решения уравнений;
- понимать, что уравнение – это математический аппарат решения разнообразных задач математики, смежных областей знаний, практики;
- решать дробно-рациональные уравнения, решать уравнения графическим способом, решать текстовые задачи с помощью дробно-рациональных уравнений.
Неравенства
В результате изучения курса математики учащиеся должны:
- знать определение числового неравенства с одной переменной, что называется решением неравенства с одной переменной, что значит решить неравенство, свойства числовых неравенств;
- понимать формулировку задачи «решить неравенство»;
- уметь записывать и читать числовые промежутки, изображать их на числовой прямой;
- решать линейные неравенства с одной переменной, решать системы неравенств с одной переменной;
- уметь применять свойства неравенства при решении неравенств и их систем.
Степень с целым показателем. Элементы статистики
В результате изучения курса математики учащиеся должны:
- знать определение степени с целым и целым отрицательным показателем; свойства степени с целым показателями;
- выполнять действия со степенями с натуральным и целым показателями;
- приводить числа к стандартному виду;
- записывать приближенные значения чисел, выполнять действия над приближенными значениями;
- собирать и группировать статистические данные;
- строить столбчатые и линейные диаграммы и графики.
Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
- интерпретации графиков реальных зависимостей между величинами;
Содержание учебного курса
Глава | Раздел, тема | Кол-во часов | В том числе | |
Количество уроков | Кол-во уроков контроля | |||
1 | Рациональные дроби и их свойства | 23 | 21 | 2 |
2 | Квадратные корни | 19 | 17 | 2 |
3 | Квадратные уравнения | 19 | 17 | 2 |
4 | Неравенства | 21 | 19 | 2 |
5 | Степень с целым показателем | 7 | 6 | 1 |
6 | Элементы статистики и теории вероятностей | 6 | 5 | 1 |
Итоговое повторение курса алгебры 8 класса | 9 | 8 | 1 | |
Всего | 104 | 93 | 11 |
Сетка контрольных работ
Кол-во уроков контроля | Вид урока контроля и тема контроля | Кол-во часов | |
2 | Контрольная работа №1: Рациональные выражения. Сложение и вычитание дробей. | 1 | |
Контрольная работа №2: Произведение и частное дробей. | 1 | ||
II четверть | 3 | Контрольная работа №3: Квадратные корни | 1 |
Контрольная работа №4: Применение свойств арифметического квадратного корня | 1 | ||
Контрольная работа №5: Квадратные уравнения | 1 | ||
III четверть | 2 | Контрольная работа №6: Дробные рациональные уравнения | 1 |
Контрольная работа №7: Числовые неравенства и их свойства. Числовые промежутки | 1 | ||
IV четверть | 4 | Контрольная работа №8: Неравенства с одной переменной и их системы | 1 |
Контрольная работа №9: Степень с целым показателем | 1 | ||
Контрольная работа №10: Элементы статистики и теории вероятностей | 1 | ||
Контрольная работа №11: Итоговое повторение. | 1 |
Приложение
Входная контрольная работа по алгебре
8 класс
1 вариант
1. Упростите выражение:
а) 5а – 3b – 8а + 12 b
б) 16с + (3с – 2) – (5с + 7)
2. Решите уравнение:
2х + 1 = 3х – 4
3. а) Постройте график функции у = 3 – 2х
б) Принадлежит ли графику функции точка М (8; -19)?
4. Вынесите общий множитель за скобки: а) 2ху - 3ху2; б) 8b4 + 2b3.
5. Выполните действия:
а) y7 • y12; б) y20 : y5; в) (y2)8; г) (2у)4.
6. Велосипедист должен был проехать весь путь с определенной скоростью за 2 часа. Но он ехал со скоростью, превышающей намеченную на 3 км/ч, поэтому на весь путь затратил 1⅔ часа. Найдите длину пути.
*Докажите, что при любых значениях переменных верно равенство:
(а + с) (а - с) - b (2а - b) - (а - b + с) (а - b - с) = 0.
2 вариант
1. Упростите выражение:
а) 3а + 7b – 6а - 4 b
б) 8с + (5 – с) – (7 + 11с)
2. Решите уравнение:
- 2х + 1 = - х – 6
3. а) Постройте график функции у = 2 – 3х
б) Принадлежит ли графику функции точка М (9; -25)?
4. Вынесите общий множитель за скобки: а) 10аb - 15b2; б) 18а3 + 6а2.
5. Выполните действия: а) с3 • с22; б) с18 : с6; в) (с4)6; г) (3с)5.
6. Пешеход рассчитал, что, двигаясь с определенной скоростью, намеченный путь он пройдет за 2,5 часа. Но он шел со скоростью, превышающей намеченную на 1 км/ч, поэтому прошел путь за 2 часа. Найдите длину пути.
*Докажите, что при любых значениях переменных верно равенство:
(х - у) (х + у) - (а - х + у) (а - х - у) - а (2х - а) = 0.
Тематическое планирование
№ п/п | Раздел, тема | Кол-во часов | Обязательные результаты обучения | дата | |
план | факт | ||||
Глава 1. Рациональные дроби и их свойства | 23 | Цель: выработать умение выполнять тождественные преобразования рациональных выражений. | |||
1-3 | Рациональные выражения | 3 | Знать и понимать:
Уметь
| ||
4-6 | Основное свойство дроби. Сокращение дробей | 3 | |||
7-8 | Сложение и вычитание дробей с одинаковыми знаменателями | 2 | |||
9-11 | Сложение и вычитание дробей с разными знаменателями | 3 | |||
12 | Контрольная работа №1: "Рациональные выражения. Сложение и вычитание дробей" | 1 | |||
13-14 | Анализ контрольной работы. Умножение дробей. Возведение дроби в степень | 2 | |||
15-16 | Деление дробей | 2 | |||
17-20 | Преобразование рациональных выражений | 4 | |||
21-22 | Функция у = k / x и ее график | 2 | |||
23 | Контрольная работа №2: "Произведение и частное дробей" | 1 | |||
Глава 2. Квадратные корни | 19 | Цель: систематизировать сведения о рациональных числах и дать представление об иррациональных числах, расширив тем самым понятие числа; выработать умение выполнять простейшие преобразования выражений, содержащих квадратные корни. | |||
24 | Анализ контрольной работы. Рациональные числа | 1 | Знать и понимать:
Уметь:
| ||
25 | Иррациональные числа | 1 | |||
26-27 | Квадратные кони. Арифметический квадратный корень | 2 | |||
28-30 | Уравнение х2 = а | 3 | |||
31 | Нахождение приближенных значений квадратного корня | 1 | |||
32-33 | Функция у = √х и ее график | 2 | |||
34 | Квадратный корень из произведения и дроби | 1 | |||
35 | Квадратный корень из степени | 1 | |||
36 | Квадратный корень из произведения, дроби, степени | 1 | |||
37 | Контрольная работа № 3: "Квадратные корни" | 1 | |||
38-39 | Анализ контрольной работы. Вынесение множителя из-под знака корня. Внесение множителя под знак корня | 2 | |||
40-41 | Преобразование выражений, содержащих квадратные корни | 2 | |||
42 | Контрольная работа № 4: "Применение свойств арифметического квадратного корня" | 1 | |||
Глава 3. Квадратные уравнения | 19 | Цель: выработать умения решать квадратные уравнения, простейшие рациональные уравнения и применять их к решению задач. | |||
43-44 | Анализ контрольной работы. Определение квадратного уравнения. Неполные квадратные уравнения | 2 | Знать и понимать:
Уметь:
| ||
45 | Решение квадратных уравнений выделением квадрата двучлена | 1 | |||
46-47 | Формула корней квадратного уравнения | 2 | |||
48 | Контрольная работа №5: «Квадратное уравнение и его корни» | 1 | |||
49 | Формула корней квадратного уравнения | 1 | |||
50-51 | Решение задач с помощью квадратных уравнений | 2 | 2 | ||
52-53 | Теорема Виета | 2 | |||
54-56 | Решение дробных рациональных уравнений | 3 | |||
57-59 | Решение задач с помощью рациональных уравнений | 3 | |||
60 | Контрольная работа №6 «Дробные рациональные уравнения» | 1 | |||
61 | Анализ контрольной работы | 1 | |||
Глава 4. Неравенства | 21 | Цель: выработать умения решать линейные неравенства с одной переменной и их системы. | |||
62-63 | Числовые неравенства | 2 | Знать и понимать:
Уметь:
| ||
64-65 | Свойства числовых неравенств | 2 | |||
66-68 | Сложение и умножение числовых неравенств | 3 | |||
69 | Погрешность и точность приближения | 1 | |||
70-71 | Пересечение и объединение множеств | 2 | |||
72-73 | Числовые промежутки | 2 | |||
74-75 | Решение неравенств с одной переменной | 2 | |||
76 | Контрольная работа №7 «Числовые неравенства и их свойства. Числовые промежутки» | 1 | |||
77-78 | Анализ контрольной работы Решение неравенств с одной переменной | 2 | |||
79-81 | Решение систем неравенств с одной переменной | 3 | |||
82 | Контрольная работа №8:"Неравенства с одной переменной и их системы " | 1 | |||
Глава 5. Степень с целым показателем | 7 | Цель: сформировать умение выполнять действия над степенями с целыми показателями, ввести понятие стандартного вида числа. | |||
83-84 | Определение степени с целым отрицательным показателем | 2 | Знать и понимать:
Уметь:
| ||
85-86 | Свойства степени с целым показателем | 2 | |||
87-88 | Стандартный вид числа | 2 | |||
89 | Контрольная работа №9 «Степень с целым показателем» | 1 | |||
Глава 6. Элементы статистики и теории вероятностей | 6 | Цель: сформировать начальные представления о сборе и группировке статистических данных, их наглядной интерпретации. | |||
90-91 | Сбор и группировка статистических данных | 2 | Уметь:
| ||
92-94 | Наглядное представление статистической информации | 3 | |||
95 | Контрольная работа №10 «Элементы статистики и теории вероятностей» | 1 | |||
Итоговое повторение | 7 | Цель: обобщение и систематизация основного материала, изученного в курсе алгебры 8 класса | |||
96 | Рациональные дроби | 1 | Знать и понимать:
Уметь:
| ||
97 | Квадратные корни и квадратные уравнения | 1 | |||
98 | Решение задач с помощью составления квадратных уравнений | 1 | |||
99 | Неравенства | 1 | |||
100 | Степень с целым показателем | 1 | |||
101 | Контрольная работа №11: «Итоговое повторение» | 1 | |||
102 | Анализ контрольной работы Обобщение изученного материала | 1 | |||
Всего | 102 |
По теме: методические разработки, презентации и конспекты
Рабочая программа по математике в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по математики 5-9 классы. Математика 5 класс: И.И.Зубарева, А.
Рабочая программа разработана на один учебный год: в основу программы положены педагогические и дидактические принципы (личностно ориентированные; культурно ориентированные; деятельно...
Рабочая программа по математике класс (автор Виленкин Н.Я.))
Рабочая проргамма содержит пояснительную записку, календарно-тематическое планирование, требования к подготовке учащихся...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
РАБОЧАЯ ПРОГРАММА по математике для 5-х классов Разработана на основе примерной рабочей программы ( автор – составитель О.С. Кузнецова ) учителем математики ГБОУ школы № 645 Старковской С.Н
Настоящая рабочая программа разработана в соответствии с основными положениями федерального государственного образовательного стандарта основного общего образования по математике....
Рабочая программа по Математике 5 класса (Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под ред. В.В.Воронковой и учебника «Математика» М.Н. Перова, Г.М. Капустина)
Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под редакцией доктора педагогических наук В.В.Воронковой Сб.1. –М.:...
РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М.
РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М...