Рабочая программа по алгебре 9 класс
рабочая программа по алгебре (9 класс) на тему

Соловьева Ирина Михайловна

Рабочая программа

Скачать:

ВложениеРазмер
Microsoft Office document icon algebra_9_16-_17.doc284.5 КБ

Предварительный просмотр:

Муниципальное общеобразовательное учреждение  

«Средняя общеобразовательная школа №  5 »

Воскресенского муниципального района Московской области

                                 

                     

                                   УТВЕРЖДЕНА

       приказом от  31.08.2016  №   217

Рабочая программа

учебного предмета (курса)  «Математика (алгебра) »

для  9  класса

Составитель

Соловьева Ирина Михайловна, учитель математики

высшей квалификационной категории

г. Воскресенск

2016 год

Рабочая программа по математике (алгебра) для 9 класса составлена на основе  

- Федерального закона от 29.12.2012г. № 273-ФЗ «Об образовании в Российской Федерации»;

- Федерального компонента государственного стандарта общего образования. (Приказ Министерства образования и науки Российской Федерации от 5 марта 2004 г. № 1089);

- Образовательной программы среднего общего образования МОУ «СОШ № 5» Воскресенского муниципального района Московской области

- Положения о порядке составления, согласования и утверждения рабочих программ  учебных предметов

- Программы общеобразовательных учреждений Алгебра 7-9 классы", составитель Т.А. Бурмистрова,/М: «Просвещение», 2009

- Учебного плана МОУ «СОШ № 5» на 2016-2017 учебный год;

- наличия ЭВМ, программного и методического обеспечения.

        Рабочая программа ориентирована на использование учебника: Алгебра 9 класс: учебник для общеобразовательных учреждений /под редакцией С.А.Теляковского авторы:Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова – 16-е издание,  Москва «Просвещение», 2012 г.

Данный учебный предмет относится к обязательной части учебного плана школы.

Программа предусматривает изучение Математики (алгебра) на базовом  уровне

         Программа рассчитана на 102 ч. в год (3 часа в неделю).

ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ  ПРЕДМЕТА «МАТЕМАТИКА (АЛГЕБРА)»

В результате изучения курса алгебры 9 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

АРИФМЕТИКА

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;
  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;
  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;
  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;
  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;
  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;
  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

АЛГЕБРА

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
  • решать линейные и квадратные неравенства с одной переменной и их системы;
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  • изображать числа точками на координатной прямой;
  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
  • описывать свойства изученных функций (у=кх, где к0, у=кх+b, у=х2, у=х3, у =, у=, у=ах2+bх+с, у= ах2+n  у= а(х - m) 2 ), строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследований построенных моделей с использованием аппарата алгебры;
  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
  • интерпретации графиков реальных зависимостей между величинами;

ЭЛЕМЕНТЫ ЛОГИКИ, КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ
ВЕРОЯТНОСТЕЙ

уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
  • решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;
  • вычислять средние значения результатов измерений;
  • находить частоту события, используя собственные наблюдения и готовые статистические данные;
  • находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);
  • распознавания логически некорректных рассуждений;
  • записи математических утверждений, доказательств;
  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
  • решения учебных и практических задач, требующих систематического перебора вариантов;
  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
  • понимания статистических утверждений.

        

СОДЕРЖАНИЕ ПРОГРАММЫ

Вводное повторение   2 часа

Глава 1 Квадратичная функция    22часа

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, её свойства и график. Степенная функция.

Основная цель - расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у=ах2, её свойств и особенностей графика, а также других частных видов квадратичной функции – функций у=ах2+n, у=а(х-m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных  переносов. Приёмы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Обучающиеся знакомятся со свойствами степенной функции у=хn при четном и нечетном натуральном показателе n.. Вводится  понятие корня  n-й степени. Обучающиеся должны понимать смысл записей вида , . Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

Глава 2. Уравнения и неравенства с одной переменной   14 часов

Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной переменной. Метод интервалов.

Основная цель- систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной. Сформировать умение решать неравенства вида ах2 + bх + с >0 или ах2 + bх + с < 0, где а ≠ 0.

 В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться в дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

Расширяются сведения о решении дробных рациональных уравнений. Обучающиеся знакомятся с некоторыми специальными приёмами решения таких уравнений.

Формирование умений решать неравенства вида ах2 + bх + с >0 или ах2 + bх + с < 0, где а ≠ 0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы, её расположение относительно оси ОХ).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

Глава 3. Уравнения и неравенства с двумя переменными.  17 часов

Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы.

Основная цель- выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В данной теме завершается изучение систем уравнений с двумя переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Изучение темы завершается введением понятий неравенства с двумя переменными и системы неравенств с двумя переменными. Сведения о графиках уравнений с двумя переменными используются при иллюстрации множеств решений некоторых простейших неравенств с двумя переменными и их систем.

Глава 4. Арифметическая и геометрическая прогрессии .  15часов

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Основная цель -дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

Глава 5. Элементы комбинаторики и теории вероятностей   13часов

Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Основная цель- ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний.

При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

6. Повторение 19часов

Основная цель - повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры основной общеобразовательной школы.

СОГЛАСОВАНО

 Зам. директора по УВР

 __________/__И.В.Нерусова_/

«______» ______________ 20____ г.

СОГЛАСОВАНО

 на заседании ШМО

протокол № ___ от «___» ________ 20___ г.

Руководитель ШМО

_____________ /___Е.Г.Сокол)___/

подпись             расшифровка подписи


Календарно- тематическое планирование

по математике (алгебра) 9 класс

на 2016 - 2017 учебный год.

( 3 часа в неделю, 102 часа в год)

Учебник для общеобразовательных учреждений 9 класс «Алгебра», Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.В.Суворова, под редакцией С.А.Теляковского – М.:Просвещение, 2014 год

Номера уроков

по порядку

№ урока

в разделе, теме

Тема урока

Название

пункта

учебника

Плановые сроки изучения  учебного материала

Скорректированные сроки изучения учебного материала

ПОВТОРЕНИЕ КУРСА АЛГЕБРЫ 7 – 8 КЛАССОВ (2 Ч)

1

1

Алгебраические выражения и их преобразование

01.09 – 07.09

2

2

Решение уравнений и неравенств

01.09 – 07.09

ГЛАВА 1. КВАДРАТИЧНАЯ ФУНКЦИЯ (22 Ч)

§1.  Функции и их свойства (5 ч)

3

1

Ключевые задачи на функцию.

П.1 , 3 ч

Функция. Область определения и область значений функции

01.09 – 07.09

4

2

Область определения и область значений функции

08.09 – 14.09

5

3

Графики функций

08.09 – 14.09

6

4

Свойства функции

П.2, 2 ч

Свойства функции

08.09 – 14.09

7

5

Свойства элементарных функций

15.09 – 21.09

§ 2. Квадратный трехчлен (4 ч)

8

6

Нахождение корней квадратного трехчлена

П.3, 2ч

Квадратный трехчлен и его корни

15.09 – 21.09

9

7

Выделение квадрата двучлена из квадратного трехчлена

15.09 – 21.09

10

8

Теорема о разложении квадратного трехчлена на множители.

П.4 2 ч

Разложение квадратного трехчлена на множители

22.09 – 28.09

11

9

Применение теоремы о разложении квадратного трехчлена на множители для преобразования выражений.  

22.09 – 28.09

12

10

Контрольная работа №1 по теме «Функции»

22.09 – 28.09

§ 3. Квадратичная функция и ее график (8 часов)

13

11

Анализ контрольной работы.

Исследование функции у = ах 2

П.5, 2 ч

Функция у = ах2, ее график и свойства

29.09 – 05.10

14

12

Функция у = ах 2,  ее график и свойства.

29.09 – 05.10

15

13

График функции у = ах 2 + n , у = а(х - m) 2

П.6, 2ч Графики функций у = ах2 + п и у = а(х т)2

29.09 – 05.10

16

14

Использование шаблонов парабол для построения графика функции у = а(х - m) 2 + n.

06.10 – 10.10

17

15

Алгоритм построения графика функции
у =ах 2 + bx+c

П.7 , 4 ч

Построение графика квадратичной функции

06.10 – 10.10

18

16

Свойства функции у =ах 2 + bx+c.

06.10 – 10.10

19

17

Влияние коэффициента a, b и с на расположение графика квадратичной функции

17.10 – 22.10

20

18

Построение графика квадратичной функции.

17.10 – 22.10

§ 4. Степенная Функция. Корень n-й степени (3 часа)

21

19

Функции у=хn и ее свойства

П.8, 1ч     Функция у = хп

17.10 – 22.10

22

20

Понятие корня  n-й степени и арифметического корня n-й степени.

П.9, 2 ч

Корень п-й степени

24.10 – 29.10

23

21

Нахождение значений выражений, содержащих корень n-й степени

24.10 – 29.10

24

22

Контрольная работа №2 по теме «Квадратичная функция»

24.10 – 29.10

ГЛАВА II. УРАВНЕНИЯ И НЕРАВЕНСТВА С ОДНОЙ ПЕРЕМЕННОЙ (14 ч)

§ 5. Уравнения с одной переменной (7 ч)

25

1

Анализ контрольной работы.

Понятие целого уравнения и его степени

П.12, 4 ч

Целое уравнение и его корни

31.10 – 05.11

26

2

Целое уравнение и его корни

31.10 – 05.11

27

3

Решение целых уравнений различными методами

31.10 – 05.11

28

4

Решение более сложных целых уравнений.

07.11 – 12.11

29

5

Дробные рациональные уравнения

П.13, 3 ч

Дробные рациональные уравнения

07.11 – 12.11

30

6

Решение дробных рациональных уравнений по алгоритму

07.11 – 12.11

31

7

Использование различных приемов и методов при решении дробных рациональных уравнений.

14.11 – 21.11

§ 6. Неравенства с одной переменной (6 ч)

32

8

Решение неравенств второй степени с одной переменной

П.14, 3 ч

Решение неравенств второй степени с одной переменной

14.11 – 21.11

33

9

Алгоритм решения неравенств второй степени с одной переменной

14.11 – 21.11

34

10

Применение алгоритма при решении неравенств второй степени с одной переменной.

28.11 – 03.12

35

11

Решение целых рациональных неравенств методом интервалов

П. 15, 3 ч

Решение неравенств методом интервалов

28.11 – 03.12

36

12

Решение целых и дробных неравенств методом интервалов

28.11 – 03.12

37

13

Применение метода интервалов при решении неравенств.

05.12 – 10.12

38

14

Контрольная работа № 3 по теме: «Уравнения и неравенства с одной переменной»

05.12 – 10.12

ГЛАВА 3. УРАВНЕНИЯ И НЕРАВЕНСТВА С ДВУМЯ ПЕРЕМЕННЫМИ (17 Ч)

§ 7. Уравнения с двумя переменными и их системы   (12 часов)

39

1

Анализ контрольной работы.

Понятие уравнения с двумя переменными

П.17, 2 ч Уравнение с двумя переменными и его график

05.12 – 10.12

40

2

Уравнение окружности

12.12 – 17.12

41

3

Графический способ решения систем уравнений

П.18, 2 ч Графический способ решения систем уравнений

12.12 – 17.12

42

4

Решения систем уравнений графически. 

12.12 – 17.12

43

5

Способ подстановки решения систем уравнений второй степени

П.19, 4 ч

Решение систем уравнений второй степени

19.12 – 24.12

44

6

Решение систем уравнений второй степени способом подстановки. 

19.12 – 24.12

45

7

Использование способа сложения при решение систем уравнения второй степени

19.12 – 24.12

46

8

Решение систем уравнения второй степени различными способами

26.12 – 30.12

47

9

Решение задач с помощью систем уравнений второй степени

П.20, 4 ч Решение задач с помощью систем уравнений второй степени

26.12 – 30.12

48

10

Решение задач на движение с помощью систем уравнений второй степени

26.12 – 30.12

49

11

Решение задач на работу с помощью систем уравнений второй степени

09.01 – 14.01

50

12

Решение различных задач с помощью систем уравнений второй степени.

09.01 – 14.01

§  8. Неравенства с двумя переменными и их системы (4 часов)

51

13

Решение линейных неравенств с двумя переменными

П.21, 2 ч

Неравенства с двумя переменными

09.01 – 14.01

52

14

Решение неравенств второй степени с двумя переменными

16.01 – 21.01

53

15

Решение систем линейных неравенств с двумя переменными.

П.22, 2 ч

Системы неравенств с двумя переменными

16.01 – 21.01

54

16

Решение систем неравенств второй степени с двумя переменными

16.01 – 21.01

55

17

Контрольная работа № 4  по теме: « Уравнения и неравенства с двумя переменными»

23.01 – 28.01

ГЛАВА 4.  АРИФМЕТИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ (15 Ч)

§  9.  Арифметическая прогрессия (8часов)

56

1

Анализ контрольной работы.

Понятие последовательности, словесный и аналитический способы ее задания

П.24, 2 ч

Последовательности

23.01 – 28.01

57

2

Рекуррентный способ задания  последовательности

23.01 – 28.01

58

3

Определение арифметической прогрессии. Рекуррентная формула n-го члена арифметической прогрессии.

П.25, 3 ч

Определение арифметической прогрессии. Формула п-го члена
арифметической прогрессии

30.01 – 04.02

59

4

Свойство арифметической прогрессии.

30.01 – 04.02

60

5

Аналитическая формула n –го члена арифметической прогрессии.

30.01 – 04.02

61

6

Нахождение суммы первых n членов арифметической прогрессии

П.26, 2 ч

Формула суммы первых п членов арифметической прогрессии

06.02 – 11.02

62

7

Применение формулы суммы первых n членов арифметической прогрессии.

06.02 – 11.02

63

8

Контрольная работа № 5 по теме: «Арифметическая прогрессия»

06.02 – 11.02

§ 10. Геометрическая прогрессия (7 часов)

64

9

Анализ контрольной работы.

Определения геометрической прогрессии. Формула n-го члена геометрической прогрессии

П.27, 2 ч

Определение геометрической прогрессии. Формула п-го члена
геометрической прогрессии

13.02 – 20.02

65

10

Свойство геометрической прогрессии.

13.02 – 20.02

66

11

Нахождение суммы первых n членов геометрической прогрессии

П. 28, 4 ч

Формула суммы первых п членов геометрической прогрессии

13.02 – 20.02

67

12

Применение формула суммы первых n членов геометрической прогрессии.

27.02 – 04.03

68

13

Сумма бесконечной убывающей геометрической прогрессии

27.02 – 04.03

69

14

Решение задач на применение формул суммы первых n членов геометрической прогрессии

27.02 – 04.03

70

15

Контрольная работа № 6 по теме: «Геометрическая прогрессия»

06.03 – 11.03

ГЛАВА 5. ЭЛЕМЕНТЫ КОМБИНАТОРИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ (13 Ч)

§  11. Элементы комбинаторики (8 часов)

71

1

Анализ контрольной работы.Комбинаторные задачи. Комбинации с учетом и без учета порядка

П.30 2 ч

Примеры комбинаторных задач

06.03 – 11.03

72

2

Комбинаторное правило умножения

06.03 – 11.03

73

3

Перестановки и n элементов конечного множества

П.31,  2 ч

 Перестановки

13.03 – 18.03

74

4

Комбинаторные задачи на нахождение числа перестановок из n элементов.

13.03 – 18.03

75

5

Размещение из n элементов по k (k   n)

П.32, 2 ч

 Размещения

13.03 – 18.03

76

6

Комбинаторные задачи на нахождение числа размещений из n элементов по k ,где(k   n) .

20.03 – 25.03

77

7

Сочетания из n элементов по k (k   n)

П.33, 2 ч

Сочетания

20.03 – 25.03

78

8

Комбинаторные задачи на нахождение числа перестановок из n элементов, сочетаний и размещений из n элементов по k (k   n) .

20.03 – 25.03

§  12. Начальные сведения из теории вероятностей (4 часа)

79

9

Относительная частота случайного события

П.34, 2 ч

Относительная частота случайного события

27.03 – 01.04

80

10

Вероятность случайного события

27.03 – 01.04

81

11

Классическое определение вероятности.

П.35, 2 ч

Вероятность равновозможных событий

27.03 – 01.04

82

12

Решение задач по теории вероятности

03.04 – 10.04

83

13

Контрольная работа № 7 по теме: « Элементы комбинаторики и теории вероятностей»

03.04 – 10.04

ПОВТОРЕНИЕ (19 Ч)

84

1

Анализ контрольной работы.

Нахождение значения числового выражения. Проценты

03.04 – 10.04

85

2

Степень с целым показателем

17.04 – 22.04

86

3

Разложение целого выражения на множители

17.04 – 22.04

87

4

Преобразование выражений, содержащих степень и арифметический корень

17.04 – 22.04

88

5

Тождественные преобразования рациональных алгебраических выражений

24.04 – 29.04

89

6

Тождественные преобразования дробно-рациональных и иррациональных  выражений.

24.04 – 29.04

90

7

Линейные, квадратные и биквадратные уравнения

24.04 – 29.04

91

8

Дробно - рациональные уравнения

01.05 – 06.05

92

9

Решение текстовых задач на составление уравнений

01.05 – 06.05

93

10

Решение систем уравнений

01.05 – 06.05

94

11

Решение текстовых задач на составление систем уравнений.

08.05 – 13.05

95

12

Линейные неравенства с одной переменной и системы линейных неравенств с одной переменной

08.05 – 13.05

96

13

Неравенства и системы неравенств с одной переменной  второй степени.

08.05 – 13.05

97

14

Решение неравенств методом интервалов.

15.05 – 20.05

98

15

Функция, ее свойства и график

15.05 – 20.05

99

16

Чтение графиков функций. Кусочно-заданные функции.

15.05 – 20.05

100

17

Решение задач второй части

22.05 – 25.05

101

18

Решение задач второй части . Тестовые задачи

22.05 – 25.05

102

19

Итоговая контрольная работа№8

22.05 – 25.05

Итого

часов

В том числе:

уроков повторения

контрольных работ

практических (лабораторных) работ

уроков развития речи

по программе

102

19

8

выполнено

СОГЛАСОВАНО

 Зам. директора по УВР

 __________/__И.В.Нерусова_/

«______» ______________ 20____ г.

СОГЛАСОВАНО

 на заседании ШМО

протокол № ___ от «___» ________ 20___ г.

Руководитель ШМО

_____________ /__Е.ГСокол_/


По теме: методические разработки, презентации и конспекты

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...

Рабочие программы по алгебре 8 класс,автор Ю.Н.Макарычев под редакцией Теляковского и по алгебре и началам математического анализа 11 класс, под редакцией А.Н.Колмогорова

Рабочая программа по алгебре 8 класс, автор Ю.Н.Макарычев под редакцией С.А.Теляковского на 2012-2013 уч.годРабочая программа по алгебре и началам анализа 11 класс под редакцией А.Н.Колмогорова на 201...

Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др

Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...

РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ Класс: 8 (базовый уровень)

Тематический план по алгебре  разработан в соответствии с  Примерной программой основного общего образования по математике, с учетом требований федерального компонента государственного...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс 9 Учитель Асессорова Е.М.

    РАБОЧАЯ ПРОГРАММА       Предмет    алгебра      Класс...