«Решение тригонометрических уравнений и неравенств»
план-конспект урока по алгебре (10 класс) по теме

Котова Татьяна Михайловна

Учебник Колмогорова А.Н. «Алгебра и начала анализа»,  10-11 класс.

Тема урока: «Решение тригонометрических уравнений и неравенств».

Цели урока

Образовательная

  • обобщить и систематизировать знания,  закрепить умения и навыки учащихся при решении задач по теме: «Решение тригонометрических уравнений и неравенств».
  • проверить усвоение учащимися основных понятий, формул, алгоритм решения уравнений и неравенств.

Развивающая

  • развивать память, внимание, продолжить развитие математической речи учащихся;
  • способствовать развитию творческой деятельности учащихся и интереса к предмету математика;

Воспитательная

  • воспитывать аккуратность, формировать  интерес к  математике;
  • воспитывать умение внимательно выслушивать мнение других, воспитание культуры общения.

Тип урока:  урок обобщения и систематизации знаний.

Продолжительность: 2 урока.

Форма урока: урок - соревнование.

Формы работы: групповая.

Методы обучения: словесный, письменная работа.

Оборудование: раздаточный материал, доска, мел, презентация, схема маршрута, флажки.

Предварительная подготовка: разделить класс на 3 команды. Расставить столы по три вместе, для трех команд. На столах таблички  «1 команда», «2 команда», «3 команда», а также флажки для команды 1 – красный, для команды 2 – зеленый, для команды 3 – синий..

Накануне урока задать задание, приготовить сообщения в сопровождении с презентацией: «Зачем нужна тригонометрия», «История возникновения тригонометрии», «Основные методы решения тригонометрических уравнений» на 3-4минуты.

План проведения урока:

  1. Организационный момент –2 мин.
  2. Подготовительный этап  – 15 мин.
  3. Обобщение и систематизация знаний – 19 мин.
  4. Подведение итогов уроков - 2мин.
  5. Информация о домашнем задании – 2 мин.

Скачать:


Предварительный просмотр:

Конспект урока по математике

«Решение тригонометрических уравнений и неравенств».

Автор разработки: Фигурова Т.М.

 «Есть в математике нечто, вызывающее человеческий восторг».

Ф. Хаусдорф

Учебник Колмогорова А.Н. «Алгебра и начала анализа»,  10-11 класс.

Тема урока: «Решение тригонометрических уравнений и неравенств».

Цели урока

Образовательная

  • обобщить и систематизировать знания,  закрепить умения и навыки учащихся при решении задач по теме: «Решение тригонометрических уравнений и неравенств».
  • проверить усвоение учащимися основных понятий, формул, алгоритм решения уравнений и неравенств.

Развивающая

  • развивать память, внимание, продолжить развитие математической речи учащихся;
  • способствовать развитию творческой деятельности учащихся и интереса к предмету математика;

Воспитательная

  • воспитывать аккуратность, формировать  интерес к  математике;
  • воспитывать умение внимательно выслушивать мнение других, воспитание культуры общения.

Тип урока:  урок обобщения и систематизации знаний.

Продолжительность: 2 урока.

Форма урока: урок - соревнование.

Формы работы: групповая.

Методы обучения: словесный, письменная работа.

Оборудование: раздаточный материал, доска, мел, презентация, схема маршрута, флажки.

Предварительная подготовка: разделить класс на 3 команды. Расставить столы по три вместе, для трех команд. На столах таблички  «1 команда», «2 команда», «3 команда», а также флажки для команды 1 – красный, для команды 2 – зеленый, для команды 3 – синий..

Накануне урока задать задание, приготовить сообщения в сопровождении с презентацией: «Зачем нужна тригонометрия», «История возникновения тригонометрии», «Основные методы решения тригонометрических уравнений» на 3-4минуты.

Оформление доски:

Ответы команд

1

2

3

4

5

6

7

8

9

итог

План проведения урока:

  1. Организационный момент –2 мин.
  2. Подготовительный этап  – 15 мин.
  3. Обобщение и систематизация знаний – 19 мин.
  4. Подведение итогов уроков - 2мин.
  5. Информация о домашнем задании – 2 мин.

Ход урока:

Деятельность

Учителя

Учащихся

  1. Организационный момент

Цель: подготовить учащихся к работе на уроке. Рассадить за столы по командам.  

Здравствуйте, ребята! Присаживайтесь. Отметим отсутствующих.

Приветствуют учителя. Рассаживаются.

  1. Подготовительный этап.

Цель: организовать и направить познавательную деятельность учащихся, актуализировать необходимые опорные знания и умения. Озвучить цель урока и план его проведения.

СЛАЙД 1

Сегодня на уроке мы с вами вспомним основные понятия: арккосинус, арксинус, арктангенс числа а, повторим алгоритм решения и будем решать тригонометрические уравнения и неравенства. Но урок у нас пройдет в необычной форме, а в виде соревнования. И называется он «Большие гонки по синусоиде».  

Откроем тетради, запишем число и тему урока «Большие гонки по синусоиде».  

Условия гонки: в гонках принимают участие 3 экипажа (команды).

Каждой команде соответствует свой флажок:

1-красный, 2-синий, 3-зеленый.

Гонки будут проходить по синусоиде на отрезке  [- π; π] (показать  схему маршрута на доске). 

Старт в точке ( –π), а финиш в  точке π.

Чтобы дойти до финиша, нужно пройти 7 этапов.

На каждом этапе экипажи должны выполнить определенное задание.

Команда, выполнившая задание первой, считается первой  прошедшей этап.

(После прохождения  каждого этапа на схеме прикалываются флажки команд в порядке выполнения заданий).

Итак, начинаем большие гонки по синусоиде! Все команды готовы? Старт!

Слушают.

Открывают тетради, записывают число и тему урока.

Слушают.

I этап.

Каждой команде заранее было задано приготовить сообщение. И сейчас для защиты своего сообщения, слово предоставляется первой команде, готовится вторая и третья команды.  

(Команды по очереди в течение 3-4 минут защищают свои презентации).

1 команда: «Зачем нужна тригонометрия».

2 команда: «История возникновения тригонометрии».

3 команда: «Основные  методы  решения тригонометрических  уравнений».

(Слушаем выступление команд, на схеме флажки перемещаем на первый этап).

Молодцы! Вы все отлично справились и благополучно прошли первый этап на нашем маршруте.

Продолжим!

Слушают.

Защищают свои сообщения, презентации.

  1. Обобщение и систематизация знаний.

Цель: формировать целостную систему ведущих знаний по теме «Решение тригонометрических уравнений и неравенств».

II этап.

СЛАЙД 2

Герберт Спенсер, английский философ, говорил: «Дороги не те знания, которые откладываются в мозгу, как жир, дороги те, которые превращаются в умственные мышцы».

И сейчас мы попробуем применить «вызубренные знания» выполняя задания на карточках.

 Время выполнения 8 минут. Решение записываете в тетради.

(Раздаю карточки с заданиями, по командам).

КОМАНДА 1

1)Что называется арксинусом числа а?

2)Найдите: ; ; .

3)Расположите числа в порядке возрастания:         

КОМАНДА 2

1)Что называется арккосинусом числа а?

2)Найдите: ; ; .

3)Расположите числа в порядке возрастания:         

КОМАНДА 3

1)Что называется арктангенсом числа а?

2)Найдите:  .

3)Расположите числа в порядке возрастания:         

Команда, которая первой выполнит задания, поднимает флажок.

(Передвигается флажок на доске той команды, которая первой правильно выполнит все задания. Задания проверяет учитель, в это время остальные команды дорешивают).

Обращают внимание на слайд.

 Слушают.

Получают задания на карточках.

Выполняют задание.

ОТВЕТЫ

КОМАНДА 1

1)Арксинусом числа а, называется такое число из , синус которого равен а.

2); ; .

3)Т.к. -1<-0,3<<0,9<1, то

КОМАНДА 2

1)Арккосинусом числа а, называется такое число из , косинус которого равен а.

2); ;

3)Т.к. -1<-0,7<-0,5<<1, то

КОМАНДА 3

1)Арктангенсом числа а, называется такое число из , тангенс которого равен а.

2) .

3)Т.к. -1<-0,8<-0,2<0,4<1, то

III этап.

СЛАЙД 3

Альберт Эйнштейн говорил так: «Мне приходится делить время между политикой и уравнениями. Однако уравнения, по-моему, гораздо важнее. Политика существует только для данного момента, а уравнения будут существовать вечно».

Вот и мы займемся уравнениями.

(Раздаю карточки с заданиями, по командам).

Но для решения более сложных уравнений требуется знание формул тригонометрии, поэтому, сначала вам необходимо дописать формулы, затем решить уравнения.

Время выполнения 10-12 мин.

КОМАНДА 1

  1. Допишите формулы:

 x – x = 
sin 2x =
cos (x – y) =
cos x – cos y =
 x + x = 

  1. Решите уравнения:

б)

в)

КОМАНДА 2

  1. Допишите формулы:

 x – x = 
sin 2x =
cos (x – y) =
cos x – cos y =
 x + x = 

  1. Решите уравнение:

б)

в)

КОМАНДА 3

  1. Допишите формулы:

 x – x = 
sin 2x =
cos (x – y) =
cos x – cos y =
 x + x = 

  1. Решите уравнение:

Команда, которая первой выполнит задания, поднимает флажок.

(Передвигается флажок на доске той команды, которая первой правильно выполнит все задания. Задания проверяет учитель, в это время остальные команды дорешивают).

Обращают внимание на слайд.

Слушают.

Получают карточки с задание.

Приступают к выполнению.

ОТВЕТЫ

КОМАНДА 1

1) Допишите формулы:

 x – x = cos 2x
sin 2x =2 sinx cosx
cos (x – y) =cosx cosy+sinx siny
cos x – cos y =

 x + x = 1

2)Решите уравнения:

б)

cos x=1

x=2

в)

sin x+cos(2-cos

cos x =-1

x=

КОМАНДА 2

1) Допишите формулы:

 x – x = cos 2x
sin 2x =2 sinx cosx
cos (x – y) =cosx cosy+sinx siny
cos x – cos y =

 x + x = 1

2)Решите уравнения:

б)

в)

КОМАНДА 3

1) Допишите формулы:

 x – x = cos 2x
sin 2x =2 sinx cosx
cos (x – y) =cosx cosy+sinx siny
cos x – cos y =

 x + x = 1

2)Решите уравнения:

-sin x=-1

sin x=1

IV этап.

СЛАЙД 4

Анатоль Франс когда-то сказал: «Учиться надо весело… Чтобы переваривать знания, надо поглощать их с аппетитом».

Посмотрите, 4 этап – точка начала отчета, поэтому этот этап отличается от других.

Чтобы успешно пройти этот этап нужно разгадать математический кроссворд, для проверки знаний по всей теме.

Время выполнения 8 минут.

Вопросы:

1)Раздел математики, изучающий свойства синуса, тангенса…

2)Абсцисса точки  на единичной окружности.

3)Отношение косинуса к синусу.

4)Синус – это …  точки  на единичной окружности.

5)Число на отрезке [; ], синус которого равен а, называется …

Команда, которая первой выполнит задание, поднимает флажок.

(Передвигается флажок той команды, которая задание выполнила первой).

Обращают внимание на слайд.

Слушают.

Получают задание, приступают к выполнению.

Ответы:

1)тригонометрия.

2)косинус.

3)ордината.

4)котангенс.

5)арксинус.

V этап.

СЛАЙД 5

Продолжим наше математическое соревнование.

Чтобы пройти пятый этап, вам необходимо решить тригонометрические неравенства. Затем найти ответ и соотнести его с число. А число соотнести с буквой в таблице «Ключ». Затем из букв составить слово, записать его в тетрадь, и поднять флажок. Задание будет засчитано в том случае, если кроме отгаданного слова будет оформлено решение неравенств.  

Время выполнения 10-15 минут.

(Раздаю карточки с заданием команде 1, команде 2, команде 3).

4

3

2

1

7

3

6

1

2

2

6

5

1

2

6

7

6

2

3

4

4

4

3

1

4

5

7

1

3

6

2

1

5

3

7

1

5

7

1

2

4

2

1

3

Ключ

7

4

6

1

5

2

3

Т

Н

С

А

Р

В

Е

Команда, которая первой выполнит задание флажок.

(Передвигается флажок той команды, которая задание выполнила первой). 

Обращают внимание на слайд.

Слушают.

Получают карточки с заданием.

Приступают к выполнению.

РЕШЕНИЕ

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

КЛЮЧЕВОЕ СЛОВО

43512346721

Неравенства

VI этап.

А теперь будем решать задачи!

Время выполнения 8-10 минут. Решение оформляйте в тетради.

(Раздаю карточки с заданием.)

КОМАНДА 1

1)На ветке сидело  воробья и

снегиря. Сколько птиц сидело на ветке?

2)У Кати было куклы. На день рождения своей подружке она подарила  3)У подъезда росло  дерева. Срубили  деревьев. Сколько деревьев осталось?

КОМАНДА 2

1)В маршрутном такси ехало   человек. На остановке вышло человека. Сколько пассажиров осталось в маршрутном такси?

2)У мамы было ) гвоздик. Потом ей подарили еще гвоздики. Сколько гвоздик стало у мамы?

3)На лугу паслось коров и  бык. Сколько животных было на лугу?

КОМАНДА 3

1)На даче росли  куста смородины. Посадили еще   кустов. Сколько кустов смородины стало на даче?

2)На стоянке стояло   машины. Вечером приехало еще    машин. Сколько машин стало?

3)У Светы было   открыток. Она подарила  открыток. Сколько открыток осталось у Светы?

Команда, которая первой выполнит задание, поднимает флажок.

(Передвигается флажок той команды, которая задание выполнила правильно и первой).

Слушают.

Получают задание.

Выполняют задание.

РЕШЕНИЕ

КОМАНДА 1

1)arccos 0+arcsin 0=

2)-arcsin

3)arctg 1-arctg(-1)=

КОМАНДА 2

1)arctg 1- arctg=

2)

3)

КОМАНДА 3

1)

2)

3)

VII этап.

СЛАЙД 6

Следующий этап нашего урока – это «Заморочки из бочки». Думать придется много, писать мало. При ответе на вопрос будете писать одно из слов: «да» или «нет».

1) Является ли убывающей функция y = cos x ?

2) Является ли четной функция y = sin x ?

3) Верно личто cosx – sin2x = 1?

4) Верно ли, что arcsin ( - http://lib.podelise.ru/tw_files2/urls_33/4/d-3487/3487_html_m3fe2cc6e.gif) = http://lib.podelise.ru/tw_files2/urls_33/4/d-3487/3487_html_7fd2cb85.gif?

5) Абсцисса точки, лежащей на единичной окружности, называется синусом?

6) Верно ли, что косинус 6,5 больше нуля?

7) Верно ли, что область значения функции тангенс есть отрезок [-1;1]?

8) Синус 600 равен http://lib.podelise.ru/tw_files2/urls_33/4/d-3487/3487_html_m3fe2cc6e.gif?

9) Отношение синуса к косинусу – это тангенс?

 (Устно проверяем ответы команд. Передвигается флажок той команды, которая наберет больше баллов за правильные ответы. Ставится 1 балл за каждый правильный ответ. Баллы выставляются на доске (см.оформление доски)).

Обращают внимание на слайд.

 Слушают.

ОТВЕТЫ

1)нет

2)нет

3)нет

4)да

5)нет

6)да

7)нет

8)нет

9)да

  1. Подведение итогов уроков.

Цель: провести анализ урока и дать оценку успешности достижения цели. Озвучить результаты соревнований.

СЛАЙД 7

   

 Итак, ребята на сегодняшнем уроке мы обобщили все знания по теме «Решение тригонометрических уравнений и неравенств», которые будут необходимы нам в дальнейшем. Я думаю, что Вы не утратили интереса к науке, а напротив, будете стремиться к более глубоким знаниям.

(Объявление победителя в математическом соревновании. Той команде, которая первой пришла к финишу, ставится «5», команде занявшей второе и третье места – «4», по желанию)

Слушают результаты игры.

  1. Информация о домашнем задании.

Цель: обеспечить понимание и принятие цели, содержания и способов выполнения домашнего задания.

          Придумать с творческим подходом (стихами, рисунками и др.) оформить задачи на решение тригонометрических уравнений и неравенств.

Большое спасибо за урок, ребята. Все молодцы!

До свидания.

Записывают домашнее задание.

Прощаются с учителем.


По теме: методические разработки, презентации и конспекты

Решение тригонометрических уравнений и неравенств.

Данный элективный курс разработан для учащихся 10 классов....

Программа элективного курса «Решение тригонометрических уравнений и неравенств»

Данный элективный курс расчитан для работы с учащимися 10 класса, направлен на формирование твердых умений и навыков решения тригонометрических уравнений и неравенств...

Решение тригонометрических уравнений и неравенств с помощью скалярного произведения векторов

Дополнительный материал к теме "Тригонометрические уравнения и неравенства"...

СПОСОБЫ РЕШЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ И НЕРАВЕНСТВ. ВАРИАНТЫ ЗАЧЕТА ПО ТЕМЕ.

Опорный конспект для работы с учащимися 10 класса по индивидуальному маршруту....

Образовательный модуль "Решение тригонометрических уравнений и неравенств различными методами"

Методическая разроботка для учителей математики. Образовательный модуль "Решение тригонометрических уравнений и неравенств различными методами"...

Решение тригонометрических уравнений и неравенств(подготовка к ЕГЭ)

Рассмотрены способы решения тригонометрических уравнений и неравенств...

Цикл уроков на тему "Решение тригонометрических уравнений и неравенств"

Презентация по алгебре для учащихся 10-11 класса в поддержку уроков по теме "Решение тригонометрических уравнений и неравенств"....