Рабочая программа по математике 5-9 классы.
рабочая программа по алгебре (5, 6, 7, 8, 9 класс) на тему
Рабочая программа по математике для 5-9 классов по учебникам Виленкина Н.Я., Макарычева Ю.Н., Атанасян Л.С.
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma_po_matematike_5_9.doc | 156.5 КБ |
Предварительный просмотр:
Муниципальное бюджетное образовательное учреждение муниципального образования Плавский район «Камынинская основная общеобразовательная школа»
Рабочая программа
по
математике
Автор программы
Коновалова Е.Н. учитель математики
I. Пояснительная записка
Программа основного общего образования по математике составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам общего образования, представленных в федеральном государственном образовательном стандарте общего образования, с учетом преемственности с программами для начального общего образования. В ней также учитываются основные идеи и положения Программы развития и формирования универсальных учебных действий для основного общего образования.
Программа основного общего образования задает перечень вопросов, которые подлежат обязательному изучению в основной школе. В программе по математике сохранена традиционная для российской школы ориентация на фундаментальный характер образования, на освоение школьниками основополагающих понятий и идей, таких, как число, буквенное исчисление, функция, геометрическая фигура, вероятность, дедукция, математическое моделирование. Программа включает материал, создающий основу математической грамотности, необходимой как тем, кто станет учеными, инженерами, изобретателями, экономистами и будет решать принципиальные задачи, связанные с математикой, так и тем, для кого математика не станет сферой непосредственной профессиональной деятельности.
Вместе с тем подходы к формированию содержания школьного математического образования претерпели существенные изменения, отвечающие требованиям сегодняшнего дня. В программе основного общего образования по математике иначе сформулированы цели и требования к результатам обучения, что меняет акценты в преподавании; в нее включена характеристика учебной деятельности обучающихся в процессе освоения содержания курса.
Система математического образования в основной школе должна стать более динамичной за счет вариативной составляющей на всем протяжении второй ступени общего образования. В программе по математике предусмотрено значительное увеличение активных форм работы, направленных на вовлечение обучающихся в математическую деятельность, на обеспечение понимания ими математического материала и развития интеллекта, приобретение практических навыков, умений проводить рассуждения, доказательства. Наряду с этим в ней уделяется внимание использованию компьютеров и информационных технологий для усиления визуальной и экспериментальной составляющей обучения математике.
Изучение математики в основной школе направлено на достижение следующих целей:
1. В направлении личностного развития:
1) развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
2) формирование у обучающихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
3) воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
4) формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
5) развитие интереса к математическому творчеству и математических способностей;
2. В метапредметном направлении:
1) формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
2) развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
3) формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
3. В предметном направлении:
1) овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной жизни;
2) создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
II. Общая характеристика учебного предмета
Образовательные и воспитательные задачи обучения математике должны решаться комплексно с учётом возрастных особенностей обучающихся. Законом об образовании учителю предоставляется право самостоятельного выбора методических путей и приёмов решения этих задач.
Принципиальным положением организации школьного математического образования в основной школе становится уровневая дифференциация обучения. Это означает, что, осваивая общий курс, одни школьники в своих результатах ограничиваются уровнем обязательной подготовки, зафиксированным в образовательном стандарте, другие в соответствии со своими склонностями и способностями достигают более высоких рубежей. При этом каждый имеет право самостоятельно решить, ограничится минимальным уровнем или же продвинуться дальше. Именно на этом пути осуществляются гуманистические начала в обучении математике.
Фундаментом математических умений школьников являются навыки вычислений на разных числовых множествах. А основой для них, в свою очередь, служат навыки устных вычислений, которые являются неотъемлемой частью любых письменных расчётов, служат основой для прикидки результатов и т. д. Кроме того, устные вычисления-эффективный способ развития у детей устойчивого внимания, оперативной памяти и других важных для обучения качеств. На формирование навыков устных вычислений нацелены специальные пособия — математические тренажеры, которые необходимо использовать на каждом уроке на этапе устной работы.
В организации учебно-воспитательного процесса важную роль играют задачи. Они являются и целью, и средством обучения и математического развития школьников. Следует иметь в виду, что теоретический материал осознаётся и усваивается преимущественно в процессе решения задач.
Необходимо всемерно способствовать удовлетворению потребностей и запросов школьников, проявляющих интерес, склонности и способности к математике. Такие учащиеся должны получать индивидуальные задания (и в первую очередь нестандартные математические задачи), их следует привлекать к оказанию помощи одноклассникам, к участию в математических кружках, олимпиадах, факультативных занятиях; Желательно рекомендовать им дополнительную литературу. Развитие интереса к математике у школьников является важнейшей задачей учителя.
Важным условием правильной организации учебно-воспитательного процесса является выбор учителем рациональной системы методов и приёмов обучения, её оптимизация с учётом возраста учащихся, уровня их математической подготовки, развития общеучебных умений, специфики решаемых образовательных и воспитательных задач. В зависимости от указанных факторов учителю необходимо реализовать сбалансированное сочетание традиционных и новых методов обучения, оптимизировать применение объяснительно- иллюстративных и эвристических методов, использование современных технических средств.
Учебный процесс необходимо ориентировать на рациональное сочетание устных и письменных видов работы как при изучении теории, так и при решении задач. Внимание учителя должно быть направлено на развитие речи учащихся, формирование у них навыков умственного труда- планирование своей работы, поиск рациональных путей её выполнения, критическую оценку результатов.
Целями изучения курса математики в 5-6 классах являются: систематическое развитие понятия числа; выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики; подготовка учащихся к изучению систематических курсов алгебры и геометрии.
Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. Теоретический материал курса излагается на наглядно-интуитивном уровне, математические методы и законы формулируются в виде правил.
Входе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают начальные представления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.
Каждый год обучения строится на основе двухступенчатой структуры: закрепительно – углубляющий этап относительно предыдущего года обучения и основной этап, реализующий программный материал в логике его развития. Распределение часов по темам примерное и корректируется учителем с учётом усвоения учебного материала обучающимися.
III. Описание места предмета в учебном плане школы
Базисный учебный (образовательный) план на изучение математики в основной школе отводит 5 учебных часов в неделю в течение каждого года обучения, всего 875 уроков.
Федеральный компонент государственного образовательного стандарта основного общего образования предполагает в 5-9 классах единого предмета «Математика», включающего содержательные разделы «Арифметика», «Алгебра», «Геометрия», «Элементы логики, комбинаторики, статистики и теории вероятностей».
IV. Личностные, метапредметные и предметные результаты освоения учебного предмета
Стандарт устанавливает требования к результатам освоения обучающимися основной образовательной программы основного общего образования:
1) личностным, включающим готовность и способность обучающихся к саморазвитию и личностному самоопределению, сформированность их мотивации к обучению и целенаправленной познавательной деятельности, системы значимых социальных и межличностных отношений, ценностно-смысловых установок, отражающих личностные и гражданские позиции в деятельности, социальные компетенции, правосознание, способность ставить цели и строить жизненные планы, способность к осознанию российской идентичности в поликультурном социуме;
2) метапредметным, включающим освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные), способность их использования в учебной, познавательной и социальной практике, самостоятельность планирования и осуществления учебной деятельности и организации учебного сотрудничества с педагогами и сверстниками, построение индивидуальной образовательной траектории;
3) предметным, включающим освоенные обучающимися в ходе изучения учебного предмета умения специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами.
Личностные результаты освоения основной образовательной программы основного общего образования должны отражать:
1) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, прошлое и настоящее многонационального народа России; осознание своей этнической принадлежности, знание истории, языка, культуры своего народа, своего края, основ культурного наследия народов России и человечества; усвоение гуманистических, демократических и традиционных ценностей многонационального российского общества; воспитание чувства ответственности и долга перед Родиной;
2) формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развития опыта участия в социально значимом труде;
3) формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое, духовное многообразие современного мира;
4) формирование осознанного, уважительного и доброжелательного отношения к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции, к истории, культуре, религии, традициям, языкам, ценностям народов России и народов мира; готовности и способности вести диалог с другими людьми и достигать в нём взаимопонимания;
5) освоение социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах, включая взрослые и социальные сообщества; участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций с учётом региональных, этнокультурных, социальных и экономических особенностей;
6) развитие морального сознания и компетентности в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам;
7) формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видов деятельности;
8) формирование ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах;
9) формирование основ экологической культуры соответствующей современному уровню экологического мышления, развитие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях;
10) осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи;
11) развитие эстетического сознания через освоение художественного наследия народов России и мира, творческой деятельности эстетического характера.
Метапредметные результаты освоения основной образовательной программы основного общего образования должны отражать:
1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
2) умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
3) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
4) умение оценивать правильность выполнения учебной задачи, собственные возможности её решения;
5) владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
6) умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
7) умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
8) смысловое чтение;
9) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формулировать, аргументировать и отстаивать своё мнение;
10) умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей; планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью;
11) формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ – компетенции);
12) формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации.
Предметные результаты освоения основной образовательной программы основного общего образования с учётом общих требований Стандарта и специфики изучаемого предмета, входящего в состав предметной области, должны обеспечивать успешное обучение на следующей ступени общего образования.
Изучение предметной области «Математика и информатика» должно обеспечить:
1) осознание значения математики и информатики в повседневной жизни человека;
2) формирование представлений о социальных, культурных и исторических факторах становления математической науки;
3) понимание роли информационных процессов в современном мире;
4) формирование представлений о математике как части общечеловеческой культуры, универсальном языке науки, позволяющем описывать и изучать реальные процессы и явления.
В результате изучения предметной области «Математика и информатика» обучающиеся развивают логическое и математическое мышление, получают представление о математических моделях; овладевают математическими рассуждениями; учатся применять математические знания при решении различных задач и оценивать полученные результаты; овладевают умениями решения учебных задач; развивают математическую интуицию; получают представление об основных информационных процессах в реальных ситуациях.
Предметные результаты изучения предметной области «Математика и информатика» должны отражать:
Математика. Алгебра. Геометрия. Информатика:
1) формирование представлений о математике как о методе познания действительности, позволяющем описывать и изучать реальные процессы и явления;
2) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования, доказательства математических утверждений;
3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений;
4) овладение символьным языком алгебры, приёмами выполнения тождественных преобразований выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умения моделировать реальные ситуации на языке алгебры, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат;
5) овладение системой функциональных понятий, развитие умения использовать функционально-графические представления для решения различных математических задач, для описания и анализа реальных зависимостей;
6) овладение геометрическим языком; развитие умения использовать его для описания предметов окружающего мира; развитие пространственных представлений, изобразительных умений, навыков геометрических построений;
7) формирование систематических знаний о плоских фигурах и их свойствах, представлений о простейших пространственных телах; развитие умений моделирования реальных ситуаций на языке геометрии, исследования построенной модели с использованием геометрических понятий и теорем, аппарата алгебры, решения геометрических и практических задач;
8) овладение простейшими способами представления и анализа статистических данных; формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о простейших вероятностных моделях; развитие умений извлекать информацию, представленную в таблицах, на диаграммах, графиках, описывать и анализировать массивы числовых данных с помощью подходящих статистических характеристик, использовать понимание вероятностных свойств окружающих явлений при принятии решений;
9) развитие умений применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, компьютера, пользоваться оценкой и прикидкой при практических расчётах;
10) формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
11) формирование представления об основных изучаемых понятиях: информация, алгоритм, модель – и их свойствах;
12) развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами — линейной, условной и циклической;
13) формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей — таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
14) формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.
V. Содержание основного общего образования по математике
Содержание математического образования применительно к основной школе представлено в виде следующих содержательных разделов. Это арифметика; алгебра; функции; вероятность и статистика; геометрия. Наряду с этим в содержание основного общего образования включены два дополнительных методологических раздела: логика и множества; математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития обучающихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения. При этом первая линия – «Логика и множества» – служит цели овладения обучающимися некоторыми элементами универсального математического языка, вторая – «Математика в историческом развитии» – способствует созданию общекультурного, гуманитарного фона изучения курса.
Содержание раздела «Арифметика» служит базой для дальнейшего изучения обучающимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.
Содержание раздела «Алгебра» способствует формированию у обучающихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики, овладение навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения обучающихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.
Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у обучающихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.
Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у обучающихся функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит обучающемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
Цель содержания раздела «Геометрия» — развить у обучающихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера.
Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.
Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается при рассмотрении различных вопросов курса. Соответствующий материал нацелен на математическое развитие обучающихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.
Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.
В рамках учебного предмета «Геометрия» традиционно изучаются евклидова геометрия, элементы векторной алгебры, геометрические преобразования.
В силу новизны для школы вероятностно-статистического материала и отсутствия методических традиций возможна вариативность при его структурировании. Начало изучения соответствующего материала может быть отнесено к 7–9 классам. Его изложение возможно в рамках курса алгебры.
5 класс
Содержательные линии | |
Числа и вычисления | Натуральные числа. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий. Степень с натуральным показателем. Обыкновенные дроби. Сравнение дробей. Арифметические действия с обыкновенными дробями. Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление обыкновенных дробей десятичными. Среднее арифметическое. Проценты. Основные задачи на проценты. Решение текстовых задач арифметическими приёмами. Приближённые значения. Округление натуральных чисел и десятичных дробей. |
Выражения и их преобразования | Буквенные выражения. Числовые подстановки в буквенные выражения. Вычисления по формулам. Буквенная запись свойств арифметических действий. |
Уравнения и неравенства | Уравнение с одной переменной. Корни уравнения. Решение текстовых задач методом составления уравнений. Числовые неравенства. |
Функции | Таблицы и диаграммы. |
Геометрические фигуры и их свойства. Измерение геометрических величин | Представление о начальных понятиях геометрии и геометрических фигурах. Равенство фигур. Отрезок. Длина отрезка и её свойства. Расстояние между точками. Угол. Виды углов. Градусная мера угла. Многоугольники. Правильные многоугольники. Окружность и круг. Формула объёма прямоугольного параллелепипеда. |
Множества и комбинаторика | Множество. Элемент множества, подмножество. Примеры решения комбинаторных задач: перебор вариантов, правило умножения. |
6 класс
Содержательные линии | |
Числа и вычисления | Делители и кратные числа. Признаки делимости. Простые числа. Разложение числа на простые множители. Обыкновенные дроби. Основное свойство дроби. Сокращение дробей. Сравнение дробей. Арифметические действия с обыкновенными дробями. Нахождение части числа и числа по его части. Отношения. Пропорции. Основное свойство пропорции. Решение текстовых задач арифметическими приёмами. Положительные и отрицательные числа. Противоположные числа. Модуль числа. Сравнение чисел. Арифметические действия с положительными и отрицательными числами, свойства арифметических действий. Рациональные числа. Изображение чисел точками координатной прямой. |
Выражения и их преобразования | Буквенные выражения. Числовые подстановки в буквенные выражения. Вычисления по формулам. Буквенная запись свойств арифметических действий. |
Уравнения и неравенства | Уравнение с одной переменной. Корни уравнения. Решение текстовых задач методом составления уравнений. Числовые неравенства. |
Функции | Прямоугольная система координат на плоскости. Таблицы и диаграммы. Графики реальных процессов. |
Геометрические фигуры и их свойства. Измерение геометрических величин | Параллельные прямые. Перпендикулярные прямые.. |
Множества и комбинаторика | Множество. Элемент множества, подмножество. Примеры решения комбинаторных задач: перебор вариантов, правило умножения. |
7 класс (алгебра, геометрия)
Содержательные линии | |
Выражения, тождества, уравнения | Числовые выражения с переменными. Простейшие преобразования выражений. Уравнение, корень уравнения. Линейное уравнение с одной переменной. Решение текстовых задач методом составления уравнений. Статистические характеристики. |
Функции | Функция, область определения функции. Вычисление значений функции по формуле. График функции. Прямая пропорциональность и ее график. Линейная функция и ее график |
Степень с натуральным показателем | Степень с натуральным показателем и её свойства. Одночлен. Функции y=x2 y=x3 и их графики. |
Начальные геометрические сведения | Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые. |
Многочлены | Многочлен. Сложение, вычитание и умножение многочленов. Разложение многочленов на множители. |
Треугольники | Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки. |
Формулы сокращенного умножения | Формулы (a ± b)2 = a2 ± 2ab+ b 2 (a ± b)3 = a3 ± 3a 2 b + 3ab 2 ± b 3 (а±b)(a²-+ab+b²) = a³±b³ Применение формул сокращенного умножения в преобразованиях выражений. |
Параллельные прямые | Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых. |
Системы линейных уравнений | Система уравнений. Решение системы двух линейных уравнений с двумя переменными и его геометрическая интерпретация. Решение текстовых задач методом составления систем уравнений. |
Соотношения между сторонами и углами треугольника | Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам. |
8 класс (алгебра, геометрия)
Содержательные линии | |
Рациональные дроби | Рациональная дробь. Основное свойство дроби, сокращение дробей. Тождественные преобразования рациональных выражений. Функция у=k/х |
Четырехугольники | Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрия. |
Квадратные корни | Понятие об иррациональных числах. Общие сведения о действительных числах. Квадратный корень. Понятие о нахождении приближенного значения квадратного корня. Свойства квадратных корней. Преобразования выражений, содержащих квадратные корни. Функция у =√ х, ее свойства и график. |
Площадь | Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора. |
Квадратные уравнения | Квадратное уравнение. Формула корней квадратного уравнения. Решение рациональных уравнений. Решение задач, приводящих к квадратным уравнениям и простейшим рациональным уравнениям. |
Подобные треугольники | Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника. |
Неравенства | Числовые неравенства и их свойства. Почленное сложение и умножение числовых неравенств. Погрешность и точность приближения. Линейные неравенства с одной переменной и их системы. |
Окружность | Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности. |
Степень с целым показателем. Элементы статистики | Степень с целым показателем и ее свойства. Стандартный вид числа. Начальные сведения об организации статистических исследований. |
9 класс (алгебра, геометрия)
Содержательные линии | |
Свойства функций. Квадратичная функция | Функция. Свойства функций. Квадратный трехчлен . Разложение квадратного трехчлена на множители. Функция y=ax2+вх+с, её свойства и график. Степенная функция. |
Векторы. Метод координат | Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнение окружности и прямой. Применение векторов и координат для решения задач. |
Уравнения и неравенства с одной переменной | Целые уравнения. Дробные рациональные уравнения. Неравенства второй степени с одной переменной. Метод интервалов. |
Соотношения между сторонами и углами треугольника. Скалярное произведение векторов | Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах. |
Уравнения и неравенства с двумя переменными | Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени. Неравенства с двумя переменными и их системы. |
Длина окружности и площадь круга | Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга. |
Прогрессии | Арифметическая и геометрическая прогрессии. Формула n- го члена и суммы n первых членов прогрессии. Бесконечно убывающая геометрическая прогрессия. |
Движение | Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения. |
Элементы комбинаторики и теории вероятностей | Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события. |
Об аксиомах геометрии | Беседа об аксиомах геометрии |
Начальные сведения из стереометрии | Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов. |
VI. Тематическое планирование
5 класс | Программа | Математика. 5-6 классы. Автор-составитель В.И. Жохов. Москва, «Мнемозина», 2009. |
Учебник | Математика 5 класс: Учебник для общеобразовательных учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд.- М.: Мнемозина, 2009г. | |
Натуральные числа и шкалы - 15ч Сложение и вычитание натуральных чисел — 21ч Умножение и деление натуральных чисел — 27ч Площади и объемы - 12ч Обыкновенные дроби — 23 ч Десятичные дроби. Сложение и вычитание десятичных дробей — 13ч Умножение и деление десятичных дробей — 26ч Инструменты для вычислений и измерений — 17ч Повторение и решение задач — 16ч | ||
6 класс | Программа | Программа. Планирование учебного материала. Математика. 5-6 классы / авт.-сост. В.И. Жохов. – М.: Мнемозина, 2009. |
Учебник | Математика: Учебник для 6 класса общеобразовательных учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд.- М.: Мнемозина, 2010 г. | |
Делимость чисел — 20ч Сложение и вычитание дробей с разными знаменателями — 22ч Умножение и деление обыкновенных дробей — 31ч отношения и пропорции — 18ч Положительные и отрицательные числа — 13 ч Сложение и вычитание положительных и отрицательных чисел — 11ч Умножение и деление положительных и отрицательных чисел — 12ч Решение уравнений — 15ч Координаты на плоскости — 13 ч Повторение. Решение задач - 15ч | ||
7 класс | Программа | Программы образовательных учреждений. Алгебра 7-9 классы. Авторы: Ю.Н. Макарычев и др. – М.: Просвещение, 2009. Программы для образовательных учреждений. Геометрия 7-9 классы. / Составитель: Т.А. Бурмистрова. – М.: Просвещение, 2009. |
Учебник | Алгебра: Учебник для 7 класса общеобразовательных учреждений / Макарычев и др.- М.: Просвещение 2010г. «Геометрия , 7-9», Л. С. Атанасян, В. Ф. Бутузов и др. | |
| ||
8 класс | Программа | Программы образовательных учреждений. Алгебра 7-9 классы. Авторы: Ю.Н. Макарычев и др. – М.: Просвещение, 2009. Программы для образовательных учреждений. Геометрия 7-9 классы. / Составитель: Т.А. Бурмистрова. – М.: Просвещение, 2009. |
Учебник | Алгебра: Учебник для 8 класса общеобразовательных учреждений / Макарычев и др.- М.: Просвещение 2010г. «Геометрия , 7-9», Л. С. Атанасян, В. Ф. Бутузов и др. | |
Рациональные дроби — 23ч Четырехугольники — 14ч Квадратные корни — 19ч Площадь — 14 Квадратные уравнения — 21ч Подобные треугольники — 19 ч Неравенства — 20ч Окружность — 17 ч Степень с целым показателем Элементы статистики — 11 ч Повторение по алгебре — 8ч Повторение по геометрии. Решение задач — 4 ч | ||
9 класс | Программа | Программы образовательных учреждений. Алгебра 7-9 классы. Авторы: Ю.Н. Макарычев и др. – М.: Просвещение, 2009. Программы для образовательных учреждений. Геометрия 7-9 классы. / Составитель: Т.А. Бурмистрова. – М.: Просвещение, 2009. |
Учебник | Алгебра: Учебник для 9 класса общеобразовательных учреждений / Макарычев и др.- М.: Просвещение 2010г. «Геометрия , 7-9», Л. С. Атанасян, В. Ф. Бутузов и др. | |
|
VII. Описание учебно-методического и материально-технического обеспечения образовательного процесса
VIII. Планируемые результаты изучения учебного предмета
Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:
в личностном направлении:
1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной
задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
4) креативность мышления, инициатива, находчивость, активность при решении математических задач;
5) умение контролировать процесс и результат учебной математической деятельности;
6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
в метапредметном направлении:
1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
в предметном направлении:
1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений;
4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем; умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;
5) овладение системой функциональных понятий, функциональным языком и символикой; умение использовать функционально-графические представления для описания и анализа реальных зависимостей;
6) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;
7) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
8) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
9) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;
10) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.
По теме: методические разработки, презентации и конспекты
Рабочая программа по математике в 5 классе. Учебник "Математика 5 класс", авторы: Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И.
Рабочая программа по математике в 5 классе. Учебник "Математика 5 класс" , авторы: Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И....
План составления рабочей программы /на примере рабочей программы по математике для 4 класса (VIII вида)
Презентация в помощь при создании рабочих программ по учебным предметам...
Рабочие программы по математике для 5 класса, по алгебре для 8 класса. УМК А. Г. Мордкович. Рабочие программы по геометрии для 7 и 8 класса. Программа соответствует учебнику Погорелова А.В. Геометрия: Учебник для 7-9 классов средней школы.
Рабочая программа содержит пояснительную записку, содержание учебного материала, учебно - тематическое планирование , требования к математической подготовке, список рекомендованной литературы, календа...
Рабочая программа по математике 5-9 классы + математика 5 класс и 6 класс
Рабочая программа составлена с учетом ФГОС. Автор учебника Истомина Н.Б....
Рабочая программа по математике для 6 класса к учебнику Математика, 6 класс, А.Г. Мерзляк, В.Б. Полонский, М. С. Якир, Е.В. Буцко
Аннотация к рабочей программе по математике для 5-6 классов по УМК А.Г. Мерзляк, В.Б. Полонского, М.С. Якира. Программа составлена в соответствии с требованиями ФГОС основного общего образования; ав...
Рабочая программа по математике 5-6 классы к учебнику математика 5, 6 классы А. Г. Мерзляк
Рабочая программа по математике 5-6 классы...
Рабочая программа по математики 5-6 классы. По учебнику математика 5 класс: А.Г. Мерзляк, Б.В. Полонский, М.С. Якир.
Рабочая программа разработана мною по учебнику математика 5-6 классы. Авторы А.Г. Мерзляк, Б.В. Полонский, М.С. Якир. Представлено календарное планирование....