Программа элективного курса "Решение задач с параметрами"
элективный курс по алгебре (11 класс) на тему

Программа элективного курса предназначена для профильных классов

Скачать:


Предварительный просмотр:

Элективный курс «Решение задач с параметрами»

Пояснительная записка

Целью профильного обучения, как одного из направлений модернизации математического образования является обеспечение углубленного изучения предмета и подготовка учащихся к продолжению образования.

Основным направлением модернизации математического школьного образования является отработка механизмов итоговой аттестации через введение единого государственного экзамена. В заданиях ЕГЭ по математике с развернутым ответом, а также с кратким ответом, встречаются задачи с параметрами.

Появление таких заданий на экзаменах далеко не случайно, т.к. с их помощью проверяется техника владения формулами элементарной математики, методами решения уравнений и неравенств, умение выстраивать логическую цепочку рассуждений, уровень логического мышления учащегося и их математической культуры.

Решению задач с параметрами в школьной программе уделяется мало внимания. Большинство учащихся либо вовсе не справляются с такими задачами, либо приводят громоздкие выкладки. Причиной этого является отсутствие системы заданий по данной теме в школьных учебниках.

В связи с этим возникла необходимость в разработке и проведении элективного курса для старшеклассников по теме: «Решение задач с параметрами».

Многообразие задач с параметрами охватывает весь курс школьной математики. Владение приемами решения задач с параметрами можно считать критерием знаний основных разделов школьной математики, уровня математического и логического мышления.

Задачи с параметрами дают прекрасный материал для настоящей учебно-исследовательской работы.

Цель курса

  • Формировать у учащихся умения и навыки по решению задач с параметрами, сводящихся к исследованию линейных и квадратных уравнений, неравенств для подготовки к ЕГЭ и к обучению в вузе.
  • Изучение курса предполагает формирование у учащегося интереса к предмету, развитие их математических способностей, подготовку к ЕГЭ, к вступительным экзаменам в вузы.
  • Развивать исследовательскую и познавательную деятельность учащегося.
  • Обеспечить условия для самостоятельной творческой работы.

В результате изучения курса учащийся должен:

  • усвоить основные приемы и методы решения уравнений, неравенств систем уравнений с параметрами;
  • применять алгоритм решения уравнений, неравенств, содержащих параметр,
  • проводить полное обоснование при решении задач с параметрами;
  • овладеть исследовательской деятельностью.

Структура курса планирования учебного материала

Темы:

  1. Первоначальные сведения. 2ч
  2. Решения линейных уравнений, содержащих параметры. 2ч
  3. Решения линейных неравенств, содержащих параметры. 2ч
  4. Квадратные уравнения и неравенства, содержащие параметры. 7ч
  5. Свойства квадратичной функции в задачах с параметрами. 4ч
  6. * Тригонометрия и параметры. 2ч
    Иррациональные уравнения. 2ч (9 класс)
  7. Показательные и логарифмические уравнения, содержащие параметры.
    Рациональные уравнения. 2ч (9 класс)
  8. * Производная и ее применения. 4ч
    Графические приемы решения. 2ч
  9. Нестандартные задачи с параметрами. 6ч
  • количество решений уравнений;
  • уравнения и неравенства с параметрами с некоторыми условиями
  1. Текстовые задачи с использованием параметра. 4 ч

* - для курса 11 класса

Краткое содержание курса

I. Первоначальные сведения.

Определение параметра. Виды уравнений и неравенств, содержащие параметр.
Основные приемы решения задач с параметрам.
Решение простейших уравнений с параметрами вида

Цель: Дать первоначальное представление учащемуся о параметре и помочь привыкнуть к параметру. К необычной форме ответов при решении уравнений.

II. Решение линейных уравнений (и уравнений приводимых к линейным), содержащих параметр.

Общие подходы к решению линейных уравнений. Решение линейных уравнений, содержащих параметр.
Решение уравнений, приводимых к линейным.
Решение линейно-кусочных уравнений.
Применение алгоритма решения линейных уравнений, содержащих параметр.
Геометрическая интерпретация.
Решение системных уравнений.

Цель: Поиск решения линейных уравнений в общем, виде; исследование количества корней в зависимости от значений параметра.

III. Решение линейных неравенств, содержащих параметр.

Определение линейного неравенства.
Алгоритм решения неравенств.
Решение стандартных линейных неравенств, простейших неравенств с параметрами.
Исследование полученного ответа.
Обработка результатов, полученных при решении.

Цель: Выработать навыки решения стандартных неравенств и приводимых к ним, углубленное изучение методов решения линейных неравенств.

IV. Квадратные уравнения, содержащие параметр.

Актуализация знаний о квадратном уравнении. Исследования количества корней, в зависимости от дискриминанта. Использование теоремы Виета. Исследование трехчлена.
Алгоритм решения уравнений.
Аналитический способ решения.
Графический способ.
Классификация задач, с позиций применения к ним методов исследования.

Цель: Формировать умение и навыки решения квадратных уравнений с параметрами.

V*. Показательные и логарифмические уравнения, содержащие параметр.
Рациональные уравнения 2ч (9 класс)

Свойства степеней и показательной функции. Решение показательных уравнений и неравенств, содержащих параметры.
Свойства логарифмов и логарифмической функции. Решение логарифмических уравнений и неравенств с параметрами.
Цель: Сформировать умение решать показательные и логарифмические уравнения и неравенства с параметрами, рациональные уравнения

VI*. Тригонометрия и параметр.
Иррациональные уравнения 2 ч (9 класс)

Использование основных свойств тригонометрических функций в задачах с параметрами. Тригонометрические уравнения, содержащие параметр.
Тригонометрические неравенства, содержащие параметр.
Область значений тригонометрических функций.

Цель: Сформировать умение использования свойств тригонометрических функций при решении тригонометрических уравнений и неравенств с параметрами.
Исследование дробно-рациональных уравнений, содержащих параметры.

VII. Свойства квадратичной функции в задачах с параметрами.

Область значений функции.
Область определения функции.
Монотонность. Координаты вершины параболы.

Цель: Познакомить с многообразием задач с параметрами.

VIII*. Производная и ее применение.

Касательная к функции.
Критические точки.
Монотонность.
Наибольшие и наименьшие значения функции.
Построение графиков функций.

Цель: Познакомить учащихся с типом задач с параметрами на применение методов дифференциального исчисления.

IX. Нестандартные задачи.

Х. Текстовые задачи с использованием параметра.

Планирование

(34 часа)

№ урока

Тема

1

Основные понятия уравнений с параметрами

2

Основные понятия неравенств с параметрами

3-4

Уравнения с параметрами (первой степени)

5-6

Неравенства с параметрами (первой степени)

7-11

Уравнения с параметрами (второй степени)

12-14

Неравенства с параметрами (второй степени)

15-16

Рациональные уравнения с параметрами

17-18

Графические приемы при решении

19-20

Свойства квадратичной функции

21-23

Текстовые задачи с использованием параметра

24-25

Иррациональные уравнения с параметрами

26-28

Параметр и количество решений уравнений, неравенств и их систем

29-30

Уравнения и неравенства с параметрами с различными условиями

31-32

Нестандартные задачи

33

Итоговая контрольная работа по курсу

34

Защита индивидуальных проектов

Заключение

Введение элективного курса «Решение задач с параметрами» необходимо учащимся в наше время, как при подготовке к ЕГЭ, так и при обучении  в вузах. Владение приемами решения задач с параметрами можно считать критерием знаний основных разделов школьной математики, уровня математического и логического мышления.

Решение задач, уравнений с параметрами, открывает перед учащимися значительное число эвристических приемов общего характера, ценных для математического развития личности, применяемых в исследованиях и на любом другом математическом материале. Именно такие задачи играют большую роль в формировании логического мышления и математической культуры у школьников, Поэтому учащиеся, владеющие методами решения задач с параметрами, успешно справляются с другими задачами.


По теме: методические разработки, презентации и конспекты

рабочая Программа элективного курса "Задачи с модулями и параметрами"

Рабочая программа рассчитана на 11 класс при подготовке к ЕГЭ, но может быть использована для 9-11 классов с разной степенью подготовки....

Элективный курс "Задачи с параметрами" 10-11 класс

Прграмма курса ориентирована на приобретение определенного опыта при решении задач с параметрами. Курс расчитан на 35 часов....

Элективный курс "Задачи с параметром" 11 класс

Сегодня нет необходимости доказывать актуальность темы «Задачи с параметрами» в рамках обучения математике в школе. Вместе с тем приходится констатировать факт отсутствия у большинства выпускников общ...

Программа элективного курса "Задачи с модулем и параметром"

Программа элективного курса "Задачи с модулем и параметром" для 9 класса...

ПРОГРАММА Элективного курса «Задачи с параметрами» (10-11 классы)

Пояснительная запискаЭлективный курс профильной подготовки учащихся 10, 11 классов посвящён одной из тем курса алгебры – задачам с параметрами. К сожалению, в средней школе при изучении алгебры практи...

Урок алгебры в 11 классе (занятие элективного курса) «Задачи с параметрами. Расположение корней квадратного трёхчлена».

При изучении темы «Решение задач с параметрами» часто практикуют решение задач  на выяснение расположения корней квадратного трёхчлена. Представляю урок алгебры в 11 классе (углублённый курс) по ...

Программа элективного курса "Задачи с параметрами" (10-11 класс)

Элективный курс для учащихся профильных 10, 11 классов посвящён одной из тем курса алгебры – задачам с параметрами и расчитан на 34 учебных часа....