Задание для 5 класса по математике - вычисление скорости
методическая разработка по алгебре (5 класс) на тему
Задача на вычисление скорости объекта по скорости другого объекта
Скачать:
Вложение | Размер |
---|---|
Задание по математике для 5 класса - вычисление скорости | 22 КБ |
Предварительный просмотр:
Задание по математике для 5 класса
Задание на анализ условий задачи
и выделение общих существенных особенностей задачи
Тема: «Задача на определение скорости объекта по скорости второго объекта, по расстоянию и времени пути между двумя объектами»
Условие задачи:
В одном направлении отправились в путь пешеход и автобус. Исходное расстояние между ними — 7500 метров (пешеход на 7,5 км впереди автобуса). Скорость пешехода — 6 км/ч. Автобус догнал пешехода через 15 минут.
Вопрос: Какова скорость автобуса?
Решение:
Следует наглядно показать ребёнку схему задачи — начертить пути движения автобуса и пешехода и обозначить на чертеже данные задачи. Ребёнок изначально понимает (по жизненному опыту), что автобус едет быстрее пешехода и потому быстро пешехода нагоняет.
Далее. Мы знаем скорость пешехода и время, пройденное им — 15 минут. Что мы можем узнать? Зная время и скорость, мы узнаём расстояние, пройденное пешеходом за данное время — за 15 минут. Как? Скорость пешехода — 6 км/ч. Значит, за 1 час пешеход проходит 6 км. А за 15 минут? Какую часть от 1 часа составляют 15 минут? Одну четвёртую часть (можно нарисовать циферблат и поделить на 4 части — 15х4=60 (минут).
Значит, первое действие: 6 (км) : 4 = 1 ½ = 1500 (м) — прошёл пешеход за 15 минут.
Далее, мы узнаём всё расстояние, которое проехал автобус, пока не догнал пешехода. К изначальному расстоянию между пешеходом и автобусом мы прибавляем расстояние, пройденное пешеходом до того момента, пока его не догнал автобус.
Второе действие: 7500 + 1500 = 9000 (м) — всё расстояние, пройденное автобусом до встречи с пешеходом.
Теперь нам известны время, пройденное автобусом (известно изначально — 15 минут), и расстояние, пройденное автобусом (9000 м). Что мы можем узнать? Конечно, скорость автобуса (ребёнок твёрдо знает, что скорость — это частное расстояния на время).
Итак, третье действие: 9000 : 15 — 600 (м/мин) — скорость автобуса.
Задачу мы решили, но надо бы перевести скорость из м/мин в км/ч, так как скорость пешехода изначально выражена именно в последней размерности. Как это сделать? Ребёнку надо вспомнить, сколько минут содержится в одном часе — 60 минут. А как перевести 600 м/мин в км/ч? Ведь эти 600 м/мин значит, что автобус проходит 600 метров за 1 минуту. А сколько метров он проходит за 1 час, то есть за 60 минут? Правильно — 60 раз по 600. Следовательно, надо 600 перемножить на 60. 600 х 60 = 36000 метров за 1 час. Переводим в километры: 36000 : 1000 = 36 км/ч. Следовательно, скорость автобуса — 36 км/ч.
Ребёнок анализирует понятие однонаправленного движения, дроби, размерность и сводимость единиц измерения. Прорабатывая и запоминая алгоритм решения задачи на вычисление скорости объекта по данной скорости другого объекта, он приобретает умение и вырабатывает навык решать задачи сходного типа.
Я настаиваю на том, что наглядность очень важна в данной задаче. Ребёнок должен видеть движение объектов, видеть то, что автобус нагоняет пешехода, отставая от него изначально на 7500 метров, понимать, почему автобус прошёл именно такое расстояние — расстояние от точки своего отправления до точки отправления пешехода плюс (пешеход-то уже в пути) расстояние, пройденное пешеходом.
Эта задача диагностирует:
1) понимание ребёнком понятия дроби как части целого — 15 минут = ¼ часть целого часа; 500 метров = 2/4 = ½ часа.
2) умение и навык перевода размерности скорости из м/мин в км/ч. Очень важное умение, в котором часто путаются школьники и более старшего возраста, нежели пятиклассники. Навык этого перевода должен быть доведён до автоматизма, он должен быть тренирован несколько раз на разных примерах, можно делать и обратный перевод — из км/ч в м/мин (а потом: из км/ч в м/с и наоборот).
По теме: методические разработки, презентации и конспекты
Разработка урока математики в 5 классе по теме "Вычисление дроби от числа"
Разработка урока изучения нового материала по учебному комплекту под редакцией Г.В. Дорофеева, но может быть использована и для других учебников. Подборка заданий рассчитана не только на хорошо ...
Задания на тему "Числа и вычисления"
В данном материале собраны различные задания по данной теме....
Урок математики «Вычисления с многозначными числами», 5 класс
Урок систематизации и комплексного применения знаний, умений и навыков по теме «Вычисления с многозначными числами», 5 класс...
Задания для повторения по теме: "Вычисления. Преобразование алгебраических выражений"(9класс)
Задания для повторения по теме: "Вычисления. Преобразование алгебраических выражений".9 класс.Карточка составлена для подготовке к экзамену....
ТЕХНОЛОГИЧЕСКАЯ КАРТА К УРОКУ МАТЕМАТИКИ В 5 КЛАССЕ ПО ТЕМЕ: «ВЫЧИСЛЕНИЯ С МНОГОЗНАЧНЫМИ ЧИСЛАМИ»
Цель урока: формирование навыков действий с многозначными числами.Задачи урока: Личностные: способность к самооценке на основе критерия успешности...
Способы решения текстовых задач ОГЭ математика 9 класс задание № 21 и ЕГЭ математика профильный уровень 11 класс задание № 11
в материале представлены различные типы текстовых задач и способы решения...
Презентация к уроку математики 6 класс на тему: " Вычисления с дробями"
Презентация к уроку математики 6 класс на тему: " Вычисления с дробями"...