Система подготовки к ОГЭ и ЕГЭ по математике
материал для подготовки к егэ (гиа) по алгебре на тему

Решение задач.

Скачать:

ВложениеРазмер
Файл sistema_podgotovki_k_oge_i_ege_po_matematike.docx59.25 КБ

Предварительный просмотр:

Система подготовки к ОГЭ и ЕГЭ по математике: решение задач на смеси, растворы и сплавы

  Решение задач на смеси, растворы и сплавы.

Человеку часто приходится смешивать различные жидкости, порошки, газообразные или твердые вещества, или разбавлять что-либо водой. Текстовые задачи на смеси, сплавы и растворы входят в различные сборники заданий по математике ОГЭ и ЕГЭ.

«Закон сохранения объема или массы»

Если два сплава (раствора) соединяют в один «новый» сплав (раствор), то V = V1 + V2 – сохраняется объем; m = m1+ m2 – сохраняется масса.

Примеры: Если сплав содержит свинец и медь в отношении 4:7, то в этом сплаве 4/11 частей от массы сплава составляет масса свинца, а 7/11- масса меди.

Немного теории. Абсолютное содержание вещества в смеси – это количество вещества, выраженное в единицах измерения (грамм, литр и др.)

Относительное содержание вещества в смеси – это отношение абсолютного содержания и общей массы (объему) смеси. Часто относительное содержание вещества в смеси называют концентрацией или процентным содержанием. Сумма концентраций всех компонентов смеси равна 1. Если имеется 40%-й раствор соли, то в этом растворе 0,4 объема занимает «чистая» соль. Значит, объемная концентрация соли в растворе равна 0,4.

  Задача №1

Смешивают 300г 90%-ного раствора соли 900г 30%-ного раствора той же соли. Определить содержание соли в полученном растворе.

  Задача №2

Какой раствор получится при смешивании 300 граммов 50%-ного раствора соли и раствора, в котором 120 граммов соли составляют 60%?

  Имеются сплавы золота и серебра. В одном эти металлы находятся в отношении 2: 3, а в другом в отношении 3: 7. Сколько нужно взять от каждого сплава, чтобы получить 1 кг нового, в котором золото и серебро находились бы в отношении 5: 11?

http://festival.1september.ru/articles/559922/f_clip_image001.gif

По этой схеме уравнение х + у =1 показывает массу нового сплава.

Определяем массу золота в каждом сплаве и получаем уравнение

http://festival.1september.ru/articles/559922/f_clip_image003.gif 

Аналогично массу серебра и получаем уравнение

http://festival.1september.ru/articles/559922/f_clip_image005.gif 

Записываем одну из систем:

http://festival.1september.ru/articles/559922/f_clip_image007.gif

http://festival.1september.ru/articles/559922/f_clip_image009.gif 

Решая ее, получаем х = 0,125 и у = 0,875

Ответ: 125 г и 875 г.

  Имеются два сплава меди со свинцом. Один сплав содержит 15% меди, а другой 65%. Сколько нужно взять каждого сплава, чтобы получилось 200г сплава, содержащего 30% меди?

http://festival.1september.ru/articles/559922/01.gif

http://festival.1september.ru/articles/559922/f_clip_image011.gif

х = 140 и у = 60

Ответ: 140 г меди и 60 г свинца

  Смешали 30%-й раствор соляной кислоты с 10%-ым раствором и получили 600 г 15%-го раствора. Сколько граммов каждого раствора надо было взять?

Решение 1: Обозначим x массу первого раствора, тогда масса второго

(600 - x). Составим уравнение: 30x + 10* (600 - x) = 600 *15

x = 150           

Решение 2: Приравнивание площадей равновеликих прямоугольников: 15x = 5 (600- x)

x =150

http://festival.1september.ru/articles/559922/f_clip_image012.gif

Ответ: 150 г 30% и 450 г 10% раствора

  Имеется лом стали двух сортов с содержанием никеля 5% и 40%. Сколько нужно взять металла каждого из этих сортов, чтобы получить140 т стали с содержанием 30% никеля?

http://festival.1september.ru/articles/559922/f_clip_image013.gif

С использованием графика:
(приравнивание площадей равновеликих прямоугольников)

10*х = 25*(140 – х)

х = 100

140 – 100 = 40

Ответ: 100 т и 40 т

  Имеется два кислотных раствора: один 20%, другой 30%. Взяли 0,5 л первого и 1,5 л второго раствора и образовали новый раствор. Какова концентрация кислоты в новом растворе?

Так как первый раствор 20 % - й, то в нем 0,2 объема занимает «чистая» кислота. Так как объем первого раствора равен 0,5л, то в этом количестве содержится 0,2*0,5=0,1 л «чистой» кислоты.

Аналогично во втором растворе будет содержаться 0,3*1,5=0,45л «чистой» кислоты.

При смешивании обоих растворов получим 0,5+1,5=2л кислотного раствора, в котором 0,1+0,45=0,55л «чистой» кислоты.

Отсюда следует, что концентрация кислоты в новом растворе есть отношение 0,55:2=0,275, т.е.27,5%. Ответ: концентрация кислоты в новом растворе 27,5%

  Имеется руда из двух пластов с содержанием меди 6% и 11%. Сколько «бедной» руды надо взять, чтобы получить при смешивании с «богатой» 20 т руды с содержанием меди 8%?

Аналитическая модель:

Переведем проценты в дроби: 6%=0,06; 11%=0,11; 8%=0,08

Пусть надо взять х т «бедной» руды, которая будет содержать 0,06х т меди, а «богатой» руды надо взять (20-х) т, которая будет содержать 0,11(20 - х) т меди.

Так как получившиеся 20 т руды будут содержать 20*0,08 т меди, то получим уравнение:

0,06х + 0,11(20 - х) = 20*0,08.

Решив уравнение, получим х = 12.

Ответ: 12т руды с 6% содержанием меди

  Старинный способ решения задач на смешивание двух веществ

У некоторого человека были на продажу масла двух сортов: одно ценою 10 гривен за ведро, другое же 6 гривен за ведро. Захотелось ему сделать из этих двух масел, смешав их, масло ценою 7 гривен за ведро. Какие части этих двух масел нужно взять, чтобы получить ведро масла ценою 7 гривен?

http://festival.1september.ru/articles/559922/f_clip_image014.gif

Из схемы делаем заключение, что дешевого масла нужно взять втрое больше, чем дорогого, т.е. для получения одного ведра ценою 7 гривен нужно взять дорогого масла 1/4 ведра, а дешевого масла 3/4.

  Способ Л.Ф.Магницкого для трех веществ

Некто имеет чай трех сортов – цейлонский по 5 гривен за фунт, индийский по 8 гривен за фунт и китайский по 12 гривен за фунт. В каких долях нужно смешать эти сорта, чтобы получить чай стоимостью 6 гривен за фунт?

http://festival.1september.ru/articles/559922/f_clip_image015.gif

Взять 6+2=8 частей чая ценой по 5 гривен и по одной части ценой 8 гривен и 12 гривен за один фунт. Возьмем 8/10 фунта чая ценой по 5 гривен за фунт и по1/10 фунта чая ценой 8 и 12 гривен за фунт, то получим 1 фунт чая ценой 8/10*5 + 1/10*8 + 1/10*12 = 6 гривен

  Сплавили два слитка серебра: 75 г 600-й и 150 г 864-й пробы. Определить пробу сплава.

Пусть проба сплава равна х. Составим диагональную схему:

http://festival.1september.ru/articles/559922/f_clip_image017.jpg

Получаем: (864 – х): (х – 600) = 75: 150

1728 – 2х = х – 600

х = 776.

Ответ: сплав 776-й пробы.

 «Правило креста» 

При решении задач на смешивание растворов разных концентраций используется «правило креста». В точке пересечения двух прямых обозначают концентрацию смеси. У концов этих прямых слева от точки пересечения указывают концентрации составных частей смеси, а справа – разности концентраций смеси и ее составных частей:

http://festival.1september.ru/articles/559922/f_clip_image019.jpg

Например, для приготовления 30 г 80%-го раствора H3PO4 требуется взять 20 г 90%-го и 10 г 60%-го растворов кислоты.

  От двух кусков сплава с массами 3 кг и 2 кг и с концентрацией меди 0,6 и 0,8 отрезали по куску равной массы. Каждый из отрезанных кусков сплавлен с остатком другого куска, после чего концентрация меди в обоих сплавах стала одинаковой. Какова масса каждого из отрезанных кусков?

Обозначим массу отрезанного куска х (кг). Так как в обоих сплавах концентрация меди после двух операция стала одинаковой, то массы сплавов и массы меди в этих сплавах пропорциональны. Первоначально массы меди в сплавах равны 0,6*3(кг) и 0,8*2(кг). После того, как отрезали куски массой х(кг), содержание меди стало 0,6(3-х) и 0,8(2-х), а после сплавления

http://festival.1september.ru/articles/559922/02.gif

0,6(3-х) + 0,8х и 0,8(2-х) +0,6х

http://festival.1september.ru/articles/559922/f_clip_image021.gif

х = 1,2

Ответ: 1,2 кг

  Латунь – сплав меди и цинка. Кусок латуни содержит меди на 11 кг больше, чем цинка. Этот кусок латуни сплавили с 12 кг меди и получили латунь, в котором 75% меди. Сколько килограммов меди было в куске латуни первоначально?

Обозначим искомую величину за х. Тогда масса первоначального куска латуни 2х – 11, а его

содержание меди составляет http://festival.1september.ru/articles/559922/f_clip_image024.gif процентов. Поскольку «медность» куска меди 100%, то по правилу квадрата получаем:

http://festival.1september.ru/articles/559922/03.gif

  В бидон налили 4л молока трехпроцентной жирности и 6л молока шестипроцентной жирности. Сколько процентов составляет жирность молока в бидоне?

Обозначим искомую величину за х. 

По правилу квадрата получим: Составим пропорцию:

http://festival.1september.ru/articles/559922/04.gif

  Тренировочные варианты ЕГЭ  и задачи на смеси и сплавы (для самостоятельной работы)

1. Сплавили 2кг сплава цинка и меди, содержащего 20% цинка, и 6кг сплава цинка и меди, содержащего 40% цинка. Найдите процентную концентрацию меди в получившемся сплаве. Ответ: 65% меди в новом сплаве.

2. Для приготовления маринада необходим 2%-ый раствор уксуса. Сколько нужно добавить воды в 100г 9%-го раствора уксуса, чтобы получить раствор для маринада? Ответ: 350 г воды


По теме: методические разработки, презентации и конспекты

Система подготовки к государственной итоговой аттестации по математике в 9-м классе в новой форме (ГИА) .

В чём же заключается подготовка к государственной итоговой аттестации и как эффективнее её провести? В нашей школе    подготовка к итоговой аттестации реализуется в рамках программы, ко...

Система подготовки к государственной итоговой аттестации по математике в 9-м классе в новой форме (ГИА)

Введение государственной итоговой аттестации по  математике в новой форме (ГИА) в 9 классе вызывает необходимость изменения в методах и формах работы учителя.Данная необходимость обусловлен...

Статья "Система подготовки к ГИА и ЕГЭ по математике"

В данной статье описывается план подготовки к ГИА и ЕГЭ по математике....

Система подготовки к государственной итоговой аттестации по математике в 9-м классе в новой форме (ГИА).

Введение государственной итоговой аттестации по  математике в новой форме (ГИА) в 9 классе вызвала  необходимость изменения в методах и формах работы учителя.Данная необходимость обусл...

Основные направления совершенствования системы подготовки учащихся к итоговой аттестации по математике

Изменения в форме итоговой аттестации являются следствием изменений, происходящих в обществе и в системе образования. В связи  с этим возникает необходимость совершенствования процесса подготовки...

Система подготовки учащихся к итоговой аттестации по математике в формате ЕГЭ

Данный материал подготовлен в фрмате презентации для выступления на заседании ГМО....

Система подготовки учащихся к итоговой аттестации по математике

Система подготовки учащихся к итоговой аттестации по математике...