Рабочая программа по алгебре 9 класс
рабочая программа по алгебре (9 класс) на тему

Пятышева Анна Ивановна

Рабочая программа составлена на основе Федерального компонента государственного стандарта общего образования (2004), программы для

общеобразовательных учреждений  – Алгебра. 7-9 классы. М.: «Просвещение», 2007г.  и программы:  Бурмистрова Т.А. Алгебра  7 - 9 классы. Программы общеобразовательных учреждений. М., «Просвещение», 2009.

Данная рабочая программа ориентирована на  учебник -  Алгебра: учебник для 9 класса общеобразовательных учреждений/ [Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др.]. - М.: Просвещение, 2009.

Скачать:


Предварительный просмотр:

Государственное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа № 152

Красногвардейского района Санкт-Петербурга

ПРИНЯТО

на заседании методического объединения учителей _________________

Протокол № _____

от «____» ______ 2014 г.

Председатель МО

________________________

СОГЛАСОВАНО:

«____» ________ 2014 г.

Зам. директора по УВР

______________С.Н. Берёзко

УТВЕРЖДАЮ:

Приказ №_________

от «____» ________ 2014 г.

Директор школы № 152

______________Р.Ю. Клименко

Рабочая программа

по алгебре для  9 класса

на 2014-2015 учебный год

Разработана на основе программы для общеобразовательных учреждений (автор:Т.А.Бурмистрова)

Составитель:       А.И.Пятышева,

                                                                        учитель математики

Санкт-Петербург

2014 г.

ПОЯСНИТЕЛЬНАЯ  ЗАПИСКА

Основа рабочей программы:

Рабочая программа составлена на основе Федерального компонента государственного стандарта общего образования (2004), программы для

общеобразовательных учреждений  – Алгебра. 7-9 классы. М.: «Просвещение», 2007г.  и программы:  Бурмистрова Т.А. Алгебра  7 - 9 классы. Программы общеобразовательных учреждений. М., «Просвещение», 2009.

Данная рабочая программа ориентирована на  учебник -  Алгебра: учебник для 9 класса общеобразовательных учреждений/ [Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др.]. - М.: Просвещение, 2009.

Данная рабочая программа включает разделы:

  • Общая характеристика курса
  • Цели изучения курса
  • Основные виды деятельности учащихся
  • Краткая характеристика контингента учащихся
  • Результаты изучения курса
  • Место курса в учебном плане
  • Содержание курса
  • Тематическое планирование
  • Поурочное планирование
  • Контрольные работы
  • Лабораторные и практические работы
  • Творческие и исследовательские работы
  • Перечень учебно-методического обеспечения

Общая характеристика курса:

Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как  языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

Цели изучения курса:

дидактические:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;

воспитательные:

  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, способности к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Задачи:

  • обучить делению многочленов, решению алгебраических уравнений и систем уравнений.
  • сформировать понятие степени с целым показателем; выработать умение выполнять преобразования простейших выражений, содержащих степень с целям показателем; ввести понятие корня n-ой степени и степени с рациональным показателем.
  • выработать умение исследовать по заданному графику функции , , , , , .
  • ввести понятия синуса, косинуса, тангенса и котангенса произвольного угла; сформировать умение вычислять по известному значению одной из тригонометрических функций значения остальных тригонометрических функций, выполнять несложные преобразования тригонометрических выражений.
  • познакомить учащихся с понятиями арифметической и геометрической прогрессий.
  • познакомить учащихся с различными видами событий, с понятием вероятности события и с различными подходами к определению этого понятия; сформировать умения нахождения вероятности события, когда число равновозможных исходов испытания очевидно; обучить нахождению вероятности события после проведения серии однотипных испытаний.
  • сформировать представления о закономерностях в массовых случайных явлениях; выработать умение сбора и наглядного представления статистических данных; обучить нахождению центральных тенденций выборки.

Основные виды деятельности учащихся:

  • Обнаружение математических процессов зависимостей в окружающем мире.
  • Анализ и решение житейских ситуаций, требующих умений выполнять построения и вычисления, анализировать зависимости.
  • Прогнозирование результата вычисления, решения задачи.
  • Планирование хода решения задачи, выполнения задания на измерение, вычисление, построение.
  • Сравнение различных приемов вычислений, решения задач.
  • Пошаговый контроль правильности и полноты выполнения алгоритма действий, плана решения текстовой задачи, построения графика функций.
  • Поиск, обнаружение и устранение ошибок логического (в ходе решения) и арифметического (в вычислении) характера.
  • Поиск необходимой информации в учебной и справочной литературе, Интернет-ресурсах.

Решение учебных задач складывается из системы учебных действий, направленных на достижение цели. Учебные действия включают в себя конкретные способы преобразования учебного материала в процессе выполнения учебных заданий: восприятие сообщений, наблюдение, актуализация опорных знаний, предметно-практические действия, изучение содержания предметной задачи и преобразование ее условия, выдвижение и проверка гипотез, составление плана решения, проведение эксперимента, выполнение упражнений, самоконтроль и самооценка действий и т.д. Содержание и «глубина» такого преобразования материала может быть различной, она определяется тем составом способов учебных действий, которыми обладает ученик, и степенью их сформированности.

В ходе преподавания алгебры в 9 классе, работы над формированием у учащихся перечисленных в программе знаний и умений, следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

Краткая характеристика контингента учащихся:

        В 8 классе обучается 24 учащихся (3 новых ученика). 9 человек имеют хорошие способности к изучению геометрии, 9 человек – средние и  6 учеников – низкие.  Класс в целом работоспособный, на уроках большая часть учеников работает активно. В классе есть ученики, которые недобросовестно относятся к выполнению домашних заданий.

РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА

В результате изучения предмета учащиеся должны

знать:

  • существо понятия математического доказательства; приводить примеры доказательств;
  • существо понятия алгоритма; приводить примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов.

уметь:

Арифметика

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;
  • записывать большие и малые числа с использованием целых степеней десятки;
  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с натуральными показателями; находить значения числовых выражений;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;
  • устной прикидки и оценки результата вычислений; проверки результата вычисления, с использованием различных приемов;
  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Алгебра

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  • выполнять основные действия со степенями с натуральными показателями, с многочленами; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
  • решать квадратные уравнения и рациональные уравнения, сводящиеся к ним;
  • решать линейные и квадратные неравенства с одной переменной и их системы;
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем;
  • описывать свойства изученных функций (у=кх, где к0, у=кх+b, у=х2, у=х3, у =,

у=, у=ах2+bх+с, у= ах2+n  у= а(х - m) 2 ), строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, для составления формул, выражающих зависимости между реальными величинами; для нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
  • описания зависимостей между физическими величинами соответствующими формулами, при исследовании несложных практических ситуаций;
  • интерпретации графиков реальных зависимостей между величинами.

Элементы логики, комбинаторики, статистики и теории вероятностей

уметь 

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;  
  •  извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
  • решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;
  • вычислять средние значения результатов измерений;
  • находить частоту события, используя собственные наблюдения и готовые статистические данные;
  •  находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве и в диалоге;
  • распознавания логически некорректных рассуждений;
  • записи математических утверждений, доказательств;
  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
  •  решения учебных и практических задач, требующих систематического перебора вариантов;
  •  сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели   с реальной ситуацией;
  • понимания статистических утверждений.

решать следующие жизненно-практические задачи:

  • самостоятельно приобретать и применять знания в различных ситуациях;
  • работать в группах;
  • аргументировать и отстаивать свою точку зрения;
  • уметь слушать других; извлекать учебную информацию на основе сопоставительного анализа объектов;
  • пользоваться предметным указателем энциклопедий и справочников для нахождения информации.

МЕСТО КУРСА В УЧЕБНОМ ПЛАНЕ

На изучение предмета отводится  136  часов, 4 часа в неделю.

СОДЕРЖАНИЕ КУРСА

Основное содержание

1. Повторение материала 8 класса

Повторение пройденного материала, обобщение и систематизация.

2. Алгебраические уравнения. Системы  нелинейных уравнений

Деление многочленов. Алгебраические уравнения. Системы нелинейных уравнений с двумя переменными. Решение задач с помощью систем уравнений.

3. Степень с рациональным показателем

Степень с целым показателем. Арифметический корень натуральной степени и его свойства. Степень с рациональным показателем. Возведение в степень числового неравенства.

4. Степенная функция

Область определения и свойства функции. Функция у=к/х. Неравенства и уравнения, содержащие степень.

5. Элементы тригонометрии

6. Прогрессии

Числовые последовательности, способы задания, свойства. Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии.

7. Случайные события

Вероятность события. Решение вероятностных задач с помощью комбинаторики. Геометрическая вероятность.

8. Случайные величины

Таблицы распределения. Полигоны частот. Генеральная совокупность и выборка. Размах.

9. Итоговое повторение

Обобщение и систематизация знаний с целью подготовки к ГИА.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№ п\п

Наименование темы

Кол-во

часов

Дата

Примеч.

1

Повторение курса алгебры 7 – 8 классов

6

2

Алгебраические уравнения. Системы нелинейных уравнений

16

2.1

Деление многочленов

1

2.2

Решение алгебраических уравнений

2

2.3

Уравнения, сводящиеся к алгебраическим

3

2.4

Системы нелинейных уравнений с двумя неизвестными

3

2.5

Различные способы решения систем уравнений

2

2.6

Решение задач с помощью систем уравнений

2

2.7

Обобщение, систематизация и коррекция знаний

2

2.8

Контрольная работа №1 по теме "Алгебраические уравнения"

1

3

Степень с целым показателем

14

3.1

Повторение свойств степени с натуральным показателем

1

3.2

Степень с целым показателем

4

3.3

Арифметический корень натуральной степени

1

3.4

Свойства арифметического корня

2

3.5

Степень с рациональным показателем

1

3.6

Возведение в степень числового неравенства

2

3.7

Обобщение, систематизация и коррекция знаний

2

3.8

Контрольная работа № 2 по теме "Степень с целым показателем"

1

4

Степенная функция    

20

4.1

Область определения функции

3

4.2

Возрастание и убывание функции

3

4.3

Четность, нечетность функции

2

4.4

Функция    

4

4.5

Неравенства и уравнения, содержащие степень

5

4.6

Обобщение, систематизация и коррекция знаний

2

4.7

Контрольная работа № 3 по теме "Степенная функция"

1

5

Элементы тригонометрии

8

5.1

Радианная мера угла.

1

5.2

Поворот точки вокруг начала координат

1

5.3

Определение синуса, косинуса, тангенса угла

2

5.4

Знаки синуса, косинуса, тангенса угла

1

5.5

Зависимость между синусом, косинусом и тангенсом одного и того же угла. Тригонометрические тождества

3

6

Прогрессии

18

6.1

Числовая последовательность

2

6.2

Арифметическая прогрессия

3

6.3

Сумма  n- первых членов арифметической прогрессии

3

6.4

Геометрическая прогрессия

3

6.5

Сумма  n- первых членов геометрической прогрессии

3

6.6

Бесконечно-убывающая геометрическая прогрессия

1

6.7

Обобщение, систематизация и коррекция знаний.

2

6.8

Контрольная работа № 4 по теме "Прогрессии"

1

7

Случайные события

14

7.1

События

1

7.2

Вероятность события.

2

7.3

Повторение элементов комбинаторики. Решение комбинаторных задач

2

7.4

Решение вероятностных задач с помощью комбинаторики

3

7.5

Противоположные события и их вероятности

1

7.6

Относительная частота и закон больших чисел

3

7.7

Обобщение, систематизация и коррекция знаний.

1

7.8

Контрольная работа № 5 по теме "Случайные события"

1

8

Случайные величины

12

8.1

Таблица распределения

3

8.2

Полигоны частот

2

8.3

Генеральная совокупность и выборка

2

8.4

Размах и центральные тенденции

3

8.5

Обобщение, систематизация и коррекция знаний.

1

8.6

Контрольная работа № 6 по теме "Случайные величины"

1

9

Повторение курса алгебры

28

9.1

Решение задач

27

9.2

Контрольная работа № 7

Итоговая контрольная работа

1

Итого часов

136

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ

1 четверть

9 недель, 36 уроков

Тема урока

Тип урока

Основное содержание, понятия

Основные виды деятельности учащихся

Домашнее задание

Примечания

(корректировка программы в течение учебного года)

Повторение курса алгебры 7 – 8 классов – 6 часов

1

Выражения и их преобразования

урок повторения и обобщения

Преобразования выражений.  

Линейные и квадратные уравнения и неравенства

Линейная и квадратичная функции

Системы уравнений и неравенств

Знать:  - формулы сокращенного умножения и применять их в различных случаях.

- Понятие функции, свойства изученных функций.

 Уметь: - выполнять действия с обыкновенными и десятичными дробями;        

 -  выполнять тождественные преобразования алгебраических выражений;

 - решать линейные уравнения и неравенства и их системы;  

-  решать квадратные уравнения и неравенства;

- строить графики линейной и квадратичной функций.

2

Решение уравнений и неравенств

урок повторения и обобщения

3

Функции

урок повторения и обобщения

4

Системы уравнений и неравенств

урок повторения и обобщения

5

Решение задач

урок повторения и обобщения

6

Вводный тест

контроль знаний и умений

Алгебраические уравнения. Системы нелинейных уравнений – 16 часов

7

Деление многочленов

изучение нового материала

 Многочлены и действия с ними,

алгебраические уравнения,

рациональные и возвратные уравнения,

системы линейных и нелинейных уравнений с двумя неизвестными,

способы решения систем уравнений,

текстовые задачи

Знать: - определение многочлена;

 - алгоритм деления многочленов уголком;

  - понятия алгебраического и рационального уравнений;

- способы решения алгебраических  уравнений        и сводящиеся к ним;

- способы решения систем уравнений;

- как используются уравнения и системы уравнений на практике;

Уметь: -  выполнять деление многочленов;

- раскладывать многочлен на множители;

- решать квадратные уравнения и уравнения высших степеней;

- решать рациональные уравнения и сводящиеся к алгебраическим;

-  решать системы линейных и нелинейных уравнений с двумя неизвестными;

- решать системы уравнений, содержащие разные виды уравнений;

-  решать текстовые задачи алгебраическим методом, составлением систем уравнений.  

8

Решение алгебраических уравнений

изучение нового материала

9

Решение алгебраических уравнений

применение знаний и умений

10

Уравнения, сводящиеся к алгебраическим

изучение нового материала

11

Уравнения, сводящиеся к алгебраическим

применение знаний и умений

12

Уравнения, сводящиеся к алгебраическим

закрепление изученного материала

13

Системы нелинейных уравнений с двумя неизвестными

изучение нового материала

14

Системы нелинейных уравнений с двумя неизвестными

применение знаний и умений

15

Системы нелинейных уравнений с двумя неизвестными

закрепление изученного материала

16

Различные способы решения систем уравнений

изучение нового материала

17

Различные способы решения систем уравнений

применение знаний и умений

18

Решение задач с помощью систем уравнений

применение знаний и умений

19

Решение задач с помощью систем уравнений

закрепление изученного материала

20

Обобщение, систематизация и коррекция знаний

обобщение и систематизация знаний

21

Обобщение, систематизация и коррекция знаний

обобщение и систематизация знаний

22

Контрольная  работа  № 1 по теме: «Алгебраические уравнения».

контроль знаний и умений

Степень с целым показателем – 14 часов

23

Повторение свойств степени с натуральным показателем

урок повторения и обобщения

Степень с натуральным показателем,

степень с целым показателем,

свойства арифметического корня натуральной степени,

свойства степени с рациональным показателем,

свойства степени с рациональным показателем

Знать: - свойства степени с натуральным и рациональным показателем;

- свойства арифметического корня; 

Уметь:  - выполнять основные действия со степенями с целыми показателями;

- применять свойства арифметических квадратных корней для вычислений значений и преобразований числовых выражений, содержащих квадратные корни.

24

Степень с целым показателем

изучение нового материала

25

Степень с целым показателем

применение знаний и умений

26

Степень с целым показателем

применение знаний и умений

27

Степень с целым показателем

закрепление изученного материала

28

Арифметический корень натуральной степени

изучение нового материала

29

Свойства арифметического корня

комбинированный урок

30

Свойства арифметического корня

применение знаний и умений

31

Степень с рациональным показателем

изучение нового материала

32

Возведение в степень числового неравенства

изучение нового материала

33

Возведение в степень числового неравенства

применение знаний и умений

34

Обобщение, систематизация и коррекция знаний

обобщение и систематизация знаний

35

Обобщение, систематизация и коррекция знаний

обобщение и систематизация знаний

36

Контрольная работа № 2 по теме "Степень с целым показателем"

контроль знаний и умений

2 четверть

7 недель, 28 уроков

Тема урока

Тип урока

Основное содержание, понятия

Основные виды деятельности учащихся

Домашнее задание

Примечания

(корректировка программы в течение учебного года)

Степенная функция    – 20 часов

37

Область определения функции

изучение нового материала

Функция, область определения функции,

возрастающая и убывающая функции,

четная и нечетная функции,

график и свойства функции

графический метод решения уравнений и систем, применение свойств степени при решении уравнений и неравенств,

свойства степенной функции.

Знать: - определение функции;

- как математически степенные функции могут описывать реальные зависимости; приводить примеры такого описания.

Уметь: - находить значения функции, заданной формулой, таблицей, графиком по ее аргументу.

- находить значение аргумента по значению функции, заданной графиком или таблицей.

- определять свойства степенной функции по ее графику.

- описывать свойства степенных функций, строить их графики.

- применять графические представления при решении уравнений, неравенств и систем.

- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для интерпретации графиков реальных зависимостей между величинами.

38

Область определения функции

применение знаний и умений

39

Область определения функции

закрепление изученного материала

40

Возрастание и убывание функции

изучение нового материала

41

Возрастание и убывание функции

применение знаний и умений

42

Возрастание и убывание функции

закрепление изученного материала

43

Четность, нечетность функции

изучение нового материала

44

Четность, нечетность функции

применение знаний и умений

45

Функция    

изучение нового материала

46

Функция    

комбинированный урок

47

Функция    

применение знаний и умений

48

Функция    

закрепление изученного материала

49

Неравенства и уравнения, содержащие степень

изучение нового материала

50

Неравенства и уравнения, содержащие степень

применение знаний и умений

51

Неравенства и уравнения, содержащие степень

применение знаний и умений

52

Неравенства и уравнения, содержащие степень

закрепление изученного материала

53

Неравенства и уравнения, содержащие степень

закрепление изученного материала

54

Обобщение, систематизация и коррекция знаний

обобщение и систематизация знаний

55

Обобщение, систематизация и коррекция знаний

обобщение и систематизация знаний

56

Контрольная работа № 3 по теме "Степенная функция"

контроль знаний и умений

Элементы тригонометрии – 8 часов

57

Радианная мера угла.

изучение нового материала

 

58

Поворот точки вокруг начала координат

изучение нового материала

59

Определение синуса, косинуса, тангенса угла

изучение нового материала

60

Определение синуса, косинуса, тангенса угла

применение знаний и умений

61

Знаки синуса, косинуса, тангенса угла

изучение нового материала

62

Зависимость между синусом, косинусом и тангенсом одного и того же угла.

изучение нового материала

63

Тригонометрические тождества

применение знаний и умений

64

Тригонометрические тождества

закрепление изученного материала

3 четверть

10 недель, 40 уроков

Тема урока

Тип урока

Основное содержание, понятия

Основные виды деятельности учащихся

Домашнее задание

Примечания

(корректировка программы в течение учебного года)

Прогрессии – 18 часов

65

Числовая последовательность

изучение нового материала

Понятие числовой последовательности,

 определение арифметической прогрессии, формула n-го члена арифметической прогрессии.

формула суммы n первых членов арифметической прогрессии,

определение геометрической прогрессии, формула n-го члена  геометрической прогрессии,

формула суммы n первых членов  геометрической прогрессии, бесконечно убывающая геометрическая прогрессия.

Знать: - определения арифметической и геометрической прогрессий;

- формулы n-го члена и суммы n первых членов арифметической и геометрической прогрессий;

Уметь: - распознавать арифметические и геометрические прогрессии.

- решать несложные задачи с применением формул общего члена и суммы нескольких первых членов прогрессий.

66

Числовая последовательность

применение знаний и умений

67

Арифметическая прогрессия

изучение нового материала

68

Арифметическая прогрессия

применение знаний и умений

69

Арифметическая прогрессия

закрепление изученного материала

70

Сумма  n- первых членов арифметической прогрессии

изучение нового материала

71

Сумма  n- первых членов арифметической прогрессии

применение знаний и умений

72

Сумма  n- первых членов арифметической прогрессии

закрепление изученного материала

73

Геометрическая прогрессия

изучение нового материала

74

Геометрическая прогрессия

применение знаний и умений

75

Геометрическая прогрессия

закрепление изученного материала

76

Сумма  n- первых членов геометрической прогрессии

изучение нового материала

77

Сумма  n- первых членов геометрической прогрессии

применение знаний и умений

78

Сумма  n- первых членов геометрической прогрессии

закрепление изученного материала

79

Бесконечно-убывающая геометрическая прогрессия

изучение нового материала

80

Обобщение, систематизация и коррекция знаний.

закрепление изученного материала

81

Обобщение, систематизация и коррекция знаний.

обобщение и систематизация знаний

82

Контрольная работа № 4 по теме "Прогрессии"

контроль знаний и умений

Случайные события – 14 часов

83

События

изучение нового материала

События, их виды,

понятие вероятности события, геометрическая вероятность,

элементы комбинаторики,

понятие противоположных событий, их вероятность,

понятие относительной частоты, тактика игр, справедливые и несправедливые игры.

Знать: - виды событий;

- понятие вероятности события;

Уметь: - решать несложные комбинаторные задачи;

- решать комбинаторные задачи с использованием правила умножения;

- находить вероятности случайных событий в простейших случаях.

84

Вероятность события.

изучение нового материала

85

Вероятность события.

применение знаний и умений

86

Повторение элементов комбинаторики. Решение комбинаторных задач

урок повторения и обобщения

87

Повторение элементов комбинаторики. Решение комбинаторных задач

закрепление изученного материала

88

Решение вероятностных задач с помощью комбинаторики

изучение нового материала

89

Решение вероятностных задач с помощью комбинаторики

применение знаний и умений

90

Решение вероятностных задач с помощью комбинаторики

закрепление изученного материала

91

Противоположные события и их вероятности

изучение нового материала

92

Относительная частота и закон больших чисел

изучение нового материала

93

Относительная частота и закон больших чисел

применение знаний и умений

94

Относительная частота и закон больших чисел

закрепление изученного материала

95

Обобщение, систематизация и коррекция знаний.

обобщение и систематизация знаний

96

Контрольная работа № 5 по теме "Случайные события"

контроль знаний и умений

Случайные величины – 12 часов

97

Таблица распределения

изучение нового материала

Таблицы распределения значений случайной величины,

полигон частот, диаграммы, гистограмма,

генеральная совокупность и выборка, репрезентативная выборка,

характеристики выборки: размах, мода, медиана, среднее, закон нормального распределения.

Знать:

Уметь: - извлекать информацию, представленную в таблицах, на диаграммах, графиках;

- составлять таблицы;

- строить диаграммы и графики;

- вычислять средние значения результатов измерений;

- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией

98

Таблица распределения

применение знаний и умений

99

Таблица распределения

закрепление изученного материала

100

Полигоны частот

изучение нового материала

101

Полигоны частот

применение знаний и умений

102

Генеральная совокупность и выборка

изучение нового материала

103

Генеральная совокупность и выборка

применение знаний и умений

104

Размах и центральные тенденции

изучение нового материала

4 четверть

8 недель, 32 урока

Тема урока

Тип урока

Основное содержание, понятия

Основные виды деятельности учащихся

Домашнее задание

Примечания

(корректировка программы в течение учебного года)

105

Размах и центральные тенденции

применение знаний и умений

106

Размах и центральные тенденции

закрепление изученного материала

107

Обобщение, систематизация и коррекция знаний.

обобщение и систематизация знаний

108

Контрольная работа № 6 по теме "Случайные величины"

контроль знаний и умений

Повторение курса алгебры – 28 часов

109-112

Арифметические действия с рациональными числами 4 часа

применение знаний и умений

Понятие рациональных чисел; действия с ними. Свойства степени.

Алгебраические выражения.   Допустимые значения переменных. Формулы сокращенного умножения. Разложение многочлена на множители.

Уравнения, системы уравнений. Неравенства, системы неравенств.

Составление уравнений и их систем по условиям задач. Решение

текстовых задач алгебраическим методом.

Понятие функции. Способы задания функции. Графики функций. Свойства функций.

Знать: • понятие алгоритма; приводить примеры алгоритмов; 

• как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач; • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;

• вероятностный характер  многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;

Уметь: использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

• выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами;

• нахождения нужной формулы в справочных материалах;

• моделирования   практических  ситуаций   и  исследования   построенных моделей с использованием аппарата алгебры;

113-116

Выражения и их преобразования 4 часа

применение знаний и умений

117-120

Решение уравнений, неравенств и их систем

4 часа

применение знаний и умений

121-124

Решение текстовых задач 4 часа

применение знаний и умений

125-128

Функции. Использование свойств функций. 4 часа

применение знаний и умений

129-130

Обобщающий урок

2 часа

обобщение и систематизация знаний

131-134

Итоговая контрольная работа  4 часа

контроль знаний и умений

135-136

Решение заданий за курс алгебры основной школы 2 часа

обобщение и систематизация знаний

КОНТРОЛЬНЫЕ  РАБОТЫ

Тема урока

Вид

работы

Тема

(содержание)

работы

Место выполнения работы

1

Вводный тест

тест

Курс алгебры 7 -8 класса

2

Контрольная работа  № 1

письменная работа

Алгебраические уравнения

3

Контрольная работа № 2

письменная работа

Степень с целым показателем

4

Контрольная работа № 3  

письменная работа

Степенная функция

5

Контрольная работа №4

письменная работа

Прогрессии

6

Контрольная работа № 5

письменная работа

Случайные события

7

Контрольная работа № 6

письменная работа

Случайные величины

8

Итоговая контрольная работа

тест

Курс алгебры основной школы

ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ

Учебники

Учебные пособия

Методические пособия

Алгебра: учебник для 8 класса общеобразовательных учреждений/ [Ш.А. Алимов, Ю.М. Колягин, Ю.В. Сидоров и др.]. - М.: Просвещение, 2009.

Таблицы: «Неравенства», «Модуль числа», «Квадратичная функция»

«Алгебра, КИМ», 8 класс, Л.Ю. Бабошкина, Москва, «Вако», 2011

Алгебра. 7-8 классы. Тесты для промежуточной аттестации / под ред. Ф.Ф.Лысенко. – Ростов н/Д.: Легион, 2009.

Алгебра: математические диктанты. 7-9 классы/ авт.-сост. А.С. Конте. –Волгоград: Учитель, 2010.

Александрова Л.А. Алгебра.7(8, 9) класс: самостоятельные работы для общеобразовательных учреждений М.: Мнемозина, 2008.

Лаппо Л. Д., Попов М.А. Государственная итоговая аттестация (в новой форме). Математика: сборник заданий 4-е изд., стереотип. М.: Экзамен, 2010.

Математические диктанты для 5-7 классов/ Е.Б.Арутюнян. – М.: Просвещение, 2007.

Олимпиадные задания по математике. 5-8 классы/ авт.-сост. Н.В. Заболотнева. – Волгоград: Учитель, 2006.

«Поурочные разработки по алгебре» к учебнику Ю.Н. Макарычева, Ш.А. Алимова 7 класс,  составители А.Н. Рурукин,  Москва, «Вако», 2010.

«Поурочные планы» алгебра 7 по учебникам Ш.А. Алимова, составитель Е.Г. Лебедева, Волгоград, «Учитель», 2003

Примерные программы основного общего образования,  математике, 2-е издание,  Москва, «Просвещение», 2009

Учитель математики А.И.Пятышева

 


По теме: методические разработки, презентации и конспекты

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...

Рабочие программы по алгебре 8 класс,автор Ю.Н.Макарычев под редакцией Теляковского и по алгебре и началам математического анализа 11 класс, под редакцией А.Н.Колмогорова

Рабочая программа по алгебре 8 класс, автор Ю.Н.Макарычев под редакцией С.А.Теляковского на 2012-2013 уч.годРабочая программа по алгебре и началам анализа 11 класс под редакцией А.Н.Колмогорова на 201...

Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др

Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...

РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ Класс: 8 (базовый уровень)

Тематический план по алгебре  разработан в соответствии с  Примерной программой основного общего образования по математике, с учетом требований федерального компонента государственного...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс 9 Учитель Асессорова Е.М.

    РАБОЧАЯ ПРОГРАММА       Предмет    алгебра      Класс...