РАБОЧАЯ ПРОГРАММА по "Алгебре и началам анализа", С.М. Никольский
рабочая программа по алгебре (10 класс) на тему

Ирина Александровна Давыдова

Планирование составлено на основе обязательного минимума содержательной области образования "Математика", а также на основе федерального компонента государственного Стандарта основного общего образования по математике.

Скачать:

ВложениеРазмер
Файл rab_pgr_10_klass_ispr.docx33.75 КБ

Предварительный просмотр:

"Утверждаю"

"Согласовано"

Рассмотрено

директор ОУ

зам.директора по УВР

на заседании М.О.

___________________

М.А.Спирина 

_____________________

С.А. Щербакова

протокол № 1_

"29"августа 2014 г.

"29"августа 2014г.

"29"августа 2014г.

РАБОЧАЯ ПРОГРАММА

 по алгебре и началам анализа

учитель Давыдова Ирина Александровна

Класс: 10(профильный уровень)

Количество часов:

Всего 136 часов,в неделю 4 часа

Плановых контрольных работ 8

Планирование составлено на основе обязательного минимума содержательной области образования»Математика»а также на основе федерального компонента государственного Стандарта основного общего образования по математике

Учебник Алгебра и начала анализа: учеб. для 10 кл. общеобразовательных  учреждений /С.М. Никольский и др.- М.: Просвещение, 2012/.

В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:

  • систематизация сведений о числах; формирование представлений о расширении числовых множеств  от натуральных до комплексных как способе построения нового математического аппарата для решения задач окружающего мира и внутренних задач математики; совершенствование техники вычислений;
  • развитие и совершенствование техники алгебраических преобразований, решения уравнений, неравенств, систем;
  • систематизация и расширение сведений о функциях, совершенствование графических умений; знакомство с основными идеями и методами математического анализа в объеме, позволяющем исследовать элементарные функции и решать простейшие
  • развитие представлений о вероятностно-статистических закономерностях в окружающем мире;
  • совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;
  • формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.

Цели

Изучение математики в старшей школе на профильном  уровне направлено на достижение следующих целей:

  • формирование представлений об идеях и методах математики; о математике как универсальном языке науки, средстве моделирования явлений и процессов;
  • овладение устным и письменным математическим языком, математическими знаниями и умениями, необходимыми для изучения  школьных  естественнонаучных дисциплин,  для продолжения образования и освоения избранной специальности на современном уровне;
  • развитие логического мышления, алгоритмической культуры,  пространственного воображения, развитие математического мышления и интуиции,  творческих способностей на уровне, необходимом для продолжения образования и  для самостоятельной  деятельности в области математики и ее приложений  в будущей профессиональной деятельности;
  • воспитание средствами математики культуры личности:  знакомство с историей развития математики, эволюцией математических идей, понимание значимости математики для общественного прогресса.

.

Общеучебные умения, навыки и способы деятельности

В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

  • проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;
  • решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;
  • планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;
  • построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей  работы, соотнесения их с поставленной задачей, с личным жизненным опытом;
  • самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.

Тематическое планирование составлено к УМК С.М. Никольского и др. «Алгебра и начала анализа», 10 класс, М. «Просвещение», 2009 год на основе федерального компонента государственного стандарта общего образования с учетом авторского тематического планирования учебного материала, опубликованного в «Программе  общеобразовательных учреждений.  Алгебра и начала математического анализа» , М. : Просвещение, 2009 г;

Курсивомв тематическом планировании выделен материал, который подлежит изучению, но не включается в Требования к уровню подготовки выпускников. Подчеркиванием выделен материал, содержащийся в Федеральном компоненте государственных образовательных стандартов среднего (полного) общего образования, но отсутствующий в учебнике С.М. Никольского и др. «Алгебра и начала анализа», 10 класс, М. «Просвещение», 2009 год. В скобках указан номер учебного пособия, представленного в списке литературы, где можно найти материал по указанной теме.
В примерном поурочном планировании первый вариант соответствует 4 ч в неделю.

Тематическое планирование к учебнику С.М. Никольского и др.

«Алгебра и начала анализа» ( профильный уровень  4ч в неделю, всего 136 часов).

Целые и действительные числа (12 часов).

Делимость целых чисел. Деление с остатком. Сравнения. Решение задач с целочисленными неизвестными.
Понятие действительного числа. Свойства действительных чисел. Множества чисел и операции над множествами чисел. Доказательство неравенств. Неравенство о среднем арифметическом и среднем геометрическом двух чисел.
Поочередный и одновременный выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач.

Рациональные уравнения и неравенства(18 часов, из них контрольные работы – 1 час).

Рациональные выражения. Формула бинома Ньютона, свойства биноминальных коэффициентов, треугольник Паскаля, формулы разности и суммы степеней.
Многочлены от одной переменной. Деление многочленов. Деление многочленов с остатком. Рациональные корни многочленов с целыми коэффициентами. Решение целых алгебраических уравнений.
Схема Горнера. Теорема Безу. Число корней многочлена.
Рациональные уравнения и неравенства, системы рациональных неравенств.

Корень степени n (12 часов, из них контрольные работы – 1 час)

Понятие функции, ее области определения и множества значений. Функция y = xn, где n принадлежит N, ее свойства и график. Понятие корня степени n>1 и его свойства, понятие арифметического корня.

Степень положительного числа (13 часов, из них контрольные работы – 1 час)

Понятие степени с рациональным показателем, свойства степени с рациональным показателем. Понятие о пределе последовательности. Теоремы о пределах последовательностей. Существование предела монотонной и ограниченной. Ряды, бесконечная геометрическая прогрессия и ее сумма. Число e. Понятие степени с иррациональным показателем. Преобразование выражений, содержащих возведение в степень. Показательная функция, ее свойства и график.

Логарифмы (6 часов)

Логарифм числа. Основное логарифмическое тождество. Логарифм произведения, частного, степени, переход к новому основанию. Десятичный и натуральный логарифмы. Преобразование выражений, содержащих логарифмы.
Логарифмическая функция, ее свойства и график.

Простейшие показательные и логарифмические уравнения и неравенства  методы их решения (11 часов, из них контрольные работы – 1 час).

Показательные и логарифмические уравнения и неравенства  и методы их решения.

Синус и косинус угла и числа (7 часов).

Радианная мера угла. Синус, косинус, тангенс и котангенс произвольного угла и действительного числа. Основное тригонометрическое тождество для синуса и косинуса. Понятия арксинуса, арккосинуса.

Тангенс и котангенс угла и числа (6 часов, из них контрольные работы – 1 час).

Тангенс и котангенс угла и числа. Основные тригонометрические тождества для тангенса и котангенса. Понятие арктангенса и арккотангенса.

Формулы сложения(11 часов).

Синус, косинус и тангенс суммы и разности двух аргументов. Формулы приведения. Синус и косинус двойного аргумента. Формулы половинного аргумента. Преобразование суммы тригонометрических функций в произведения и произведения в сумму. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразование тригонометрических выражений.

Тригонометрические функции числового аргумента (9 часов, из них контрольные работы – 1 час).

Тригонометрические функции, их свойства и графики, периодичность, основной период.

Тригонометрические уравнения и неравенства (12 часов, из них контрольные работы – 1 час).

Решение простейших тригонометрических уравнений и неравенств. Основные способы решения уравнений. Решение тригонометрических неравенств.

Элементы теории вероятностей (8 часов).

Понятие и свойства вероятности события.  Относительная частота события. Условная вероятность. Независимые события.

Повторение курса алгебры и математического анализа за 10 класс (11 часов, из них контрольная работа– 2 часа).

Требования к уровню подготовки десятиклассников.

В результате изучения математики на профильном уровне в старшей школе  ученик должен
Знать/понимать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
  • значение практики и вопросов, возникающих в самой математике, для формирования и развития математической науки;
  • идеи расширения числовых множеств как способа построения нового математического аппарата для решения практических задач  и внутренних задач математики;
  • значение идей, методов и результатов алгебры и математического анализа для построения моделей реальных процессов и ситуаций;
  • универсальный характер законов логики математических рассуждений, их применимость в различных областях человеческой деятельности;
  • различие требований, предъявляемых к доказательствам в математике, естественных, социально-экономических и гуманитарных науках, на практике;
  • вероятностных характер различных процессов и закономерностей окружающего мира.

Числовые и буквенные выражения

Уметь:

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости  вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
  • применять понятия, связанные с делимостью целых чисел, при решении математических задач;
  • находить корни многочленов с одной переменной, раскладывать многочлены на множители;
  • проводить преобразования числовых и буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, при необходимости используя справочные материалы и простейшие вычислительные устройства.

Функции и графики

Уметь

  • определять значение функции по значению аргумента при различных способах задания функции;
  • строить графики изученных функций, выполнять преобразования графиков;
  • описывать по графику и по формуле поведение и свойства  функций;
  • решать уравнения, системы уравнений, неравенства, используя свойства функций и их графические представления;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни  для :

  • описания и исследования с помощью функций реальных зависимостей, представления их графически; интерпретации графиков реальных процессов.

Начала математического анализа

Уметь 
находить сумму бесконечно убывающей геометрической  прогрессии;

Уравнения и неравенства

Уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, иррациональные и тригонометрические уравнения, их системы;
  • доказывать несложные неравенства;
  • решать текстовые задачи с помощью  составления уравнений, и неравенств, интерпретируя результат с учетом ограничений условия задачи;
  • изображать на координатной плоскости множества решений уравнений и неравенств с двумя переменными и их систем.
  • находить приближенные решения уравнений и их систем, используя графический метод;
  • решать уравнения, неравенства и системы с применением  графических представлений, свойств функций, производной;
  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для  построения и исследования простейших математических моделей.

Элементы комбинаторики, статистики и теории вероятностей

Уметь:

  • решать простейшие комбинаторные задачи методом перебора, а также с  использованием известных формул, треугольника Паскаля; вычислять коэффициенты  бинома Ньютона по формуле и с использованием  треугольника Паскаля;
  • вычислять, в простейших случаях, вероятности событий на основе подсчета числа исходов.

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков; для  анализа информации статистического характера.
  • Планирование по алгебре и началам анализа в 10 классе по учебнику С.Н . Никольского 4 часа в неделю .Всего 136 уроков в году

№ урока

Тема урока

Дата

   ПОВТОРЕНИЕ       2 Ч

1

Повторение  

2

Повторение  

Действительные числа  10  ч

3

Понятие действительного числа

4

Множества чисел.Свойства делимости

5

Метод  математической индукции

6

Перестановки

7

Размещения

8

Сочетания

9

Доказательство числовых неравенств

10

Делимость целых чисел

11

Сравнение по модулю m

12

Задачи с целочисленными неизвестными

Рациональные уравнения и неравенства 18  ч

13

Рациональные выражения

14

Формулы бинома Ньютона ,суммы и разности степеней

15

Рациональные уравнения

16

Рациональные уравнения

17

Системы рациональных уравнений

18

Системы рациональных уравнений

19

Метод интервалов решения неравенств

20

Метод интервалов решения неравенств

21

Метод интервалов решения неравенств

22

Рациональные неравенства

23

Рациональные неравенства

24

Рациональные неравенства

25

Нестрогие неравенства

26

Нестрогие неравенства

27

Нестрогие неравенства

28

Системы рациональных неравенств

29

Обобщающий урок

30

Контрольная работа №1

Корень степени п  12  ч

31

Анализ контрольной работы.Понятие функции и ее графика

32

Фукция у=х

33

Понятие корня степени п

34

Корни четной и нечетной степеней

35

Корни четной и нечетной степеней

36

Арифметический корень

37

Арифметический корень

38

Свойства корней степени п

39

Свойства корней степени п

40

Функция у=

41

Обобщающий урок

42

Контрольная работа №2

Степень положительного числа   13 ч

43

Анализ контрольной работы.Степень с рациональным показателем

44

Свойства степени с рациональным показателем

45

Свойства степени с рациональным показателем

46

Понятие предела последовательности

47

Свойства пределов

48

Свойства пределов

49

Бесконечно убывающая геометрическая прогрессия

50

Число е

51

Понятие степени с иррациональным показателем

52

Показательная функция

53

Показательная функция

54

Обобщающий урок

55

Контрольная работа №3

Логарифмы   6 ч

56

Понятие логарифма

57

Понятие логарифма

58

Свойства логарифмов

59

Свойства логарифмов

60

Свойства логарифмов

61

Логарифмическая функция

Показательные и логарифмические уравнения и неравенства   11 ч

62

Простейшие показательные уравнения

63

Простейшие логарифмические  уравнения

64

Уравнения, сводящиеся к простейшим заменой неизвестного

65

Уравнения, сводящиеся к простейшим заменой неизвестного

66

Простейшие показательные неравенства

67

Простейшие показательные неравенства

68

Простейшие логарифмические  неравенства

69

Простейшие логарифмические  неравенства

70

Неравенства, сводящиеся к простейшим заменой неизвестного

71

Обобщающий урок

72

Контрольная работа №4

Синус и косинус угла     7  ч

73

Анализ контрольной работы.Понятие угла

74

Радианная мера угла

75

Определение синуса и косинуса угла

76

Основные формулы для sin a u cos a

77

Основные формулы для sin a u cos a

78

Арксинус

79

Арккосинус

Тангенс и котангенс  6  ч

80

Определение тангенса и котангенса угла

81

Основные формулы для tg a u ctg  a

82

Основные формулы для tg a u ctg  a

83

Арктагенс  и арккотангенс

84

Обобщающий урок

85

Контрольная работа №5

Формулы сложения  11  ч

86

Анализ контрольной работы. Косинус разности и косинус суммы двух углов

87

Косинус разности и косинус суммы двух углов

88

Формулы для дополнительных углов

89

Синус суммы и синус разности двух углов

90

Синус суммы и синус разности двух углов

91

Сумма и разность синусов и косинусов

92

Сумма и разность синусов и косинусов

93

Формулы для двойных и половинных углов

94

Формулы для двойных и половинных углов

95

Произведение синусов и косинусов

96

Формулы для тангенсов

Тригонометрические функции числового аргумента  9  ч

97

Функция у = sin x

98

Функция у = sin x

99

Функция у =cos x

100

Функция у = cos x

101

Функция у =tg x

102

Функция у = tg x

103

Функция у = ctg x

104

Обобщающий урок

105

Контрольная работа №6

Тригонометрические  уравнения и неравенства    13  ч

106

Анализ контрольной работы. Простейшие тригонометрические уравнения

107

Простейшие тригонометрические уравнения

108

Уравнения, сводящиеся к простейшим заменой неизвестного

109

Уравнения, сводящиеся к простейшим заменой неизвестного

110

Применение основных тригонометрических формул для решения уравнений

111

Применение основных тригонометрических формул для решения уравнений

112

Однородные уравнения

113

Простейшие неравенства для синуса и косинуса

114

Простейшие неравенства для тангенса и котангенса

115

Неравенства ,сводящиеся к простейшим заменой неизвестного

116

Введение вспомогательного угла

117

Обобщающий урок

Контрольная работа №7

Элементы теории вероятностей   7  ч

118

Анализ контрольной работы. Понятие вероятности события

119

Понятие вероятности события

120

Свойства вероятностей

121

Свойства вероятностей

122

Свойства вероятностей

123

Относительная частота события

124

Условная вероятность. Независимость событий

Повторение    12  ч

125

Повторение курса алгебры и начала анализа за 10 класс

126

Повторение курса алгебры и начала анализа за 10 класс

127

Повторение курса алгебры и начала анализа за 10 класс

128

Повторение курса алгебры и начала анализа за 10 класс

129

Повторение курса алгебры и начала анализа за 10 класс

130

Повторение курса алгебры и начала анализа за 10 класс

131

Повторение курса алгебры и начала анализа за 10 класс

132

Повторение курса алгебры и начала анализа за 10 класс

133

Повторение курса алгебры и начала анализа за 10 класс

Повторение курса алгебры и начала анализа за 10 класс

134

Повторение курса алгебры и начала анализа за 10 класс

135

Повторение курса алгебры и начала анализа за 10 класс

136

Итоговая контрольная работа

ЛИТЕРАТУРА

  1. Программы  общеобразовательных учреждений.  Алгебра и начала математического анализа, М.: Просвещение, 2009 г/.
  2. Алгебра и начала математического анализа: книга для учителя  10 класс, /М. К. Потапов, А. В. Шевкин.  М.: Просвещение, 2009/.
  3. Алгебра и начала анализа: учеб. для 10 кл. общеобразовательных  учреждений /С.М. Никольский и др.- М.: Просвещение, 2007/.
  4. Алгебра и начала анализа: дидактические материалы, 10 класс, /М. К. Потапов, А. В. Шевкин.  М.: Просвещение, 2009 г/.
  5. Алгебра и начала математического анализа: тематические тесты, 10 класс, /Ю. В. Шепелева.  М.: Просвещение, 2009 г/.


По теме: методические разработки, презентации и конспекты

Рабочая программа по алгебре и началам анализа. Базовый уровень .11 класс. Никольский С.М.

Рабочая программа, тематическое планирование  3 часа в неделю....

Рабочая программа по алгебре и началам анализа 10-11 класс (учебник Никольского)

Рабочая программа содержит пояснительную записку, содержание тем, календарно-тематическое планирование и др....

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

Рабочая программа по алгебре и началам анализа для 10 класса к УМК С.М.Никольского. Базовый уровень.

Рабочая программа разработана в соответствии с ФГОС СОО для изучения алгебры на базовом уровне в размере 70 часов (2 часа в неделю)....