Структура и планирование по модулям. Алгебра. Алимов Ш.А. 11 класс
рабочая программа по алгебре (11 класс) на тему

Макаренко Наталья Ивановна

Структура и планирование по модулям.

Скачать:

ВложениеРазмер
Файл tttttttttttttttttttttt.docx26.82 КБ

Предварительный просмотр:

Структура курса и планирование по модулям. 3 часа в неделю. Всего 102 часа.

                                            Содержание материала. Цели и задачи обучения.

Средства обучения

Виды контроля

1.

Повторение курса 10 класса  2ч

Показательная функция. Логарифмическая функция. Тригонометрические формулы. Степенная функция.

 Основные цели: формирование представлений о целостности и непрерывности курса алгебры; овладение умением обобщения и систематизации знаний по основным темам курса алгебры 10 класса; развитие логического, математического мышления и интуиции, творческих способностей в области математики

Учебник  Ш.А.Алимова и др. «Алгебра и начала анализа 10-11»

Привлечение ресурса Интернет

Карточки для индивидуальной работы

Таблицы

Диагностика. Тест. 15 мин.

2.

Глава 7. Тригонометрические функции 14ч

Область определения и множество значений тригонометрических функций. Чётность, нечётность, периодичность тригонометрических функций. Свойства и графики функций       y = cos x, y = sin x, y = tg x.

 Основные цели: формирование представлений об области определения и множестве значений тригонометрических функций, о нечётной и чётной функциях, о периодической функции, о периоде функции, о наименьшем положительном периоде; формирование умений находить область определения и множество значений тригонометрических функций сложного аргумента, представленного в виде дроби и корня; овладение умением свободно строить графики тригонометрических функций и описывать их свойства;

Котрольная работа  №1

Требования к уровню подготовки учащихся.

Основные знания. Основные умения.

В результате изучения темы учащиеся должны:

знать: область определения и множество значений элементарных тригонометрических функций; тригонометрические функции, их свойства и графики;

уметь: находить область определения и множество значений тригонометрических функций; множество значений тригонометрических функций вида kf(x) m, где f(x)- любая тригонометрическая функция; доказывать периодичность функций с заданным периодом; исследовать функцию на чётность и нечётность; строить графики тригонометрических функций; совершать преобразование графиков функций, зная их свойства; решать графически простейшие тригонометрические уравнения и неравенства.

Учебник  Ш.А.Алимова и др. «Алгебра и начала анализа 10-11»

Презентация

Привлечение ресурса Интернет

Карточки для индивидуальной работы

Таблицы

3.

Глава 8. Производная и её геометрический смысл 16ч

Производная. Производная степенной функции. Правила дифференцирования. Производные некоторых элементарных функций. Геометрический смысл производной.

 Основные цели: формирование понятий о мгновенной скорости, о касательной к плоской кривой, о касательной к графику функции, о производной функции, о физическом смысле производной, о геометрическом смысле производной, о скорости изменения функции, о пределе функции в точке, о дифференцировании, о производных элементарных функций; формирование умения использовать алгоритм нахождения производной элементарных функций простого и сложного аргумента; овладение умением находить производную любой комбинации элементарных функций; овладение навыками составления уравнения касательной к графику функции при дополнительных условиях, нахождения углового коэффициента касательной, точки касания.

Контрольная работа №2

Тест.

Требования к уровню подготовки учащихся.

Основные знания. Основные умения.

В результате изучения темы учащиеся должны:

знать: понятие производной функции, физического и геометрического смысла производной; понятие производной степени, корня; правила дифференцирования; формулы производных элементарных функций; уравнение касательной к графику функции; алгоритм составления уравнения касательной;

уметь:  вычислять производную степенной функции и корня; находить производные суммы, разности, произведения, частного; производные основных элементарных функций; находить производные элементарных функций сложного аргумента; составлять уравнение касательной к графику функции по алгоритму; участвовать в диалоге, понимать точку зрения собеседника, признавать право на иное мнение; объяснять изученные положения на самостоятельно подобранных примерах; осуществлять поиск нескольких способов решения, аргументировать рациональный способ, проводить доказательные рассуждения; самостоятельно искать необходимую для решения учебных задач информацию.

Учебник  Ш.А.Алимова и др. «Алгебра и начала анализа 10-11»

Привлечение ресурса Интернет

Карточки для индивидуальной работы

Таблицы

       

4.

Глава 9. Применение производной к исследованию функций 16ч

Возрастание и убывание функций. Экстремумы функции. Применение производной к построению графиков функций. Наибольшее и наименьшее значения функции. Выпуклость графика. Точки перегиба.

 Основные цели: формирование представлений о промежутках возрастания и убывания функции, о достаточном условии возрастания функции, о промежутках монотонности функции, об окрестности точки, о точках максимума и минимума функции, о точках экстремума, о критических точках; формирование умения строить эскиз графика функции, если задан отрезок, значения функции на концах этого отрезка и знак производной в некоторых точках функции; овладение умением применять производную к исследованию функций и построению графиков;  овладение навыками исследовать в простейших случаях функции на монотонность, находить наибольшее и наименьшее значения функций, точки перегиба и интервалы выпуклости.

   Контрольная работа №3

Тест.

Требования к уровню подготовки учащихся.

Основные знания. Основные умения.

В результате изучения темы учащиеся должны:

знать: понятие стационарных, критических точек, точек экстремума; как применять производную к исследованию функций и построению графиков; как исследовать в простейших случаях функции на монотонность, находить наибольшее и наименьшее значения функции;

уметь: находить интервалы возрастания и убывания функций; строить эскиз графика непрерывной функции, определённой на отрезке; находить стационарные точки функции, критические точки и точки экстремума;  применять производную к исследованию функций и построению графиков;  находить наибольшее и наименьшее значение функции; работать с учебником, отбирать и структурировать материал.

Учебник  Ш.А.Алимова и др. «Алгебра и начала анализа 10-11»

Привлечение ресурса Интернет

Карточки для индивидуальной работы

Таблицы

5.

Глава 10. Интеграл 15 ч

Первообразная. Правила нахождения первообразных. Площадь криволинейной трапеции и интеграл. Вычисление интегралов. Вычисление площадей с помощью интегралов.

 Основные цели:  формирование представлений о первообразной функции, о семействе первообразных, о дифференцировании и интегрировании, о таблице первообразных, о правилах отыскания первообразных; формирование умений находить для функции первообразную, график которой проходит через точку, заданную координатами;  овладение умением находить площадь криволинейной трапеции, ограниченной графиками функций y = f(x) и y = g(x), ограниченной прямыми x = a. х = b, осью Ох и графиком y = h(x).

Котрольная работа №4

Тест.

Требования к уровню подготовки учащихся.

Основные знания. Основные умения.

В результате изучения темы учащиеся должны:

знать: понятие первообразной, интеграла; правила нахождения первообразных; таблицу первообразных; формулу Ньютона Лейбница; правила интегрирования;

уметь:   проводить информационно-смысловой анализ прочитанного текста в учебнике, участвовать в диалоге, приводить примеры; аргументировано отвечать на поставленные вопросы, осмысливать ошибки и их устранять; доказывать, что данная функция является первообразной для другой данной функции; находить одну из первообразных для суммы функций и произведения функции на число, используя справочные материалы; выводить правила отыскания первообразных; изображать криволинейную трапецию, ограниченную графиками элементарных функций; вычислять интеграл от элементарной функции простого аргумента по формуле Ньютона Лейбница с помощью таблицы первообразных и правил интегрирования;  вычислять площадь криволинейной трапеции, ограниченной прямыми x = a, х = b, осью Ох и графиком квадратичной функции; находить площадь криволинейной трапеции, ограниченной параболами; вычислять путь, пройденный телом от начала движения до остановки, если известна его скорость; предвидеть возможные последствия своих действий; владеть навыками контроля и оценки своей деятельности.

Учебник  Ш.А.Алимова и др. «Алгебра и начала анализа 10-11»

Презентация

Привлечение ресурса Интернет

Карточки для индивидуальной работы

Таблицы

6.

Глава 11. Элементы математической статистики, комбинаторики и теории вероятностей 19ч

Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочерёдный и одновременны выбор нескольких элементов из конечного множества. Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биноминальных коэффициентов. Треугольник Паскаля. Элементарные и сложные события. Рассмотрение случаев: вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события. Решение практических задач с применение вероятностных методов. Случайные величины. Центральные тенденции. Меры разброса. Решение практических задач по теме «Статистика».

 Основные цели: формирование представлений о научных, логических, комбинаторных методах решения математических задач; формирование умения анализировать, находить различные способы решения одной и той же задачи, делать выводы; развитие комбинаторно-логического мышления; формирование представления о теории вероятности, о понятиях: вероятность, испытание, событие (невозможное и достоверное), вероятность событий, объединение и пересечение событий, следствие события, независимость событий;  формирование умения вычислять вероятность событий, определять несовместные и противоположные события; овладение умением выполнения основных операций над событиями; овладение навыками решения практических задач с применением вероятностных методов;

          Контрольная работа №5

Требования к уровню подготовки учащихся.

Основные знания. Основные умения.

В результате изучения темы учащиеся должны:

знать: понятие комбинаторной задачи и основных методов её решения (перестановки, размещения, сочетания без повторения и с повторением); понятие логической задачи; приёмы решения комбинаторных, логических задач; элементы графового моделирования; понятие вероятности событий; понятие невозможного и достоверного события; понятие независимых событий; понятие условной вероятности событий; понятие статистической частоты наступления событий;

уметь: использовать основные методы решения комбинаторных, логических задач; разрабатывать модели методов решения задач, в том числе и при помощи графвого моделирования; переходить от идеи задачи к аналогичной, более простой задаче, т.е. от основной постановки вопроса к схеме;  ясно выражать разработанную идею задачи; вычислять вероятность событий; определять равновероятные события; выполнять основные операции над событиями; доказывать независимость событий; находить условную вероятность; решать практические задачи, применяя методы теории вероятности.

Учебник  Ш.А.Алимова и др. «Алгебра и начала анализа 10-11»

Привлечение ресурса Интернет

Карточки для индивидуальной работы

Таблицы

7.

Обобщающее повторение курса алгебры и начал анализа за 10-11 классы 20ч

Числа и алгебраические преобразования. Уравнения. Неравенства. Системы уравнений и неравенств. Производная функции и ее применение к решению задач. Функции и графики. Текстовые задачи на проценты, движение, прогрессии.

 Основные цели: обобщение и систематизация курса алгебры и начал анализа за 10- 11 классы;  создание условий для плодотворного участия в групповой работе, для формирования умения самостоятельно и мотивированно организовывать свою деятельность;  формирование представлений об идеях и методах математики, о математике как средстве моделирования явлений и процессов; развитие логического и математического мышления, интуиции, творческих способностей; воспитание понимания значимости математики для общественного прогресса.

 В рабочей программе изменено соотношение часов на изучение тем и итоговое повторение в сторону уменьшения по отношению к типовой программе. Высвободившиеся часы отведены на обобщающее повторение по каждой теме, работу с тестами и подготовку к итоговой аттестации в форме и по материалам ЕГЭ. Подготовку к экзаменам планируется проводить в системе, начиная с 10 класса

Учебник  Ш.А.Алимова и др. «Алгебра и начала анализа 10-11»

Презентация

Привлечени ресурса Интернет

Карточки ля индивидуальной работы

Таблиц

Контрольня работа №6

Контрольая работа №7


По теме: методические разработки, презентации и конспекты

Структура курса и планирование по модулям. 10 класс. Геометрия.

Структура курса и планирование по модулям....

Структура курса и планирование по модулям. Алгебра 7 класс.

Структура курса и планирование по модулям....

Рабочая программа по учебному предмету "Математика" (модуль «Алгебра») для 10-х классов

Главной целью школьного образования является развитие ребенка как компетентной личности путем включения его в различные виды ценностной человеческой деятельности: учеба, познания, коммуникация, профес...

Программа по математике (модуль "АЛГЕБРА") в 7-9 классе.

Программа предназначена для 3-х часов в неделю, учебник автора  А.Г.Мордкович....

Календарно-тематическое планирование уроков по алгебре и геометрии 7 класс

Календарно-тематическое планирование уроков по алгебре и геометрии 7 класс...