Рабочая программа по алгебре , 11 класс
рабочая программа по алгебре (11 класс) на тему

Россамахина Ирина Юрьевна

Рабочая программа по алгебре для  11 класса составлена к учебнику А.Г.Мордковича 

Скачать:

ВложениеРазмер
Microsoft Office document icon programma_11_kl_mortkovich.doc174 КБ

Предварительный просмотр:

Муниципальное автономное общеобразовательное учреждение

Средняя общеобразовательная школа № 50 г. Томска

СОГЛАСОВАНО

На заседании МО

Протокол №  ____

от «____»________________20

Руководитель МО____________ 

          подпись

                                        Расшифровка

                   

УТВЕРЖДАЮ

Директор МАОУ СОШ № 50

___________Доброволянская И.А.

Приказ № ______

От «_____» __________20

Рабочая программа

Предмет: Алгебра

Класс  11

Всего часов на изучение программы: 102 часа

Количество часов в неделю : 3 часа

Составила : Россамахина И.Ю.,

                                                                                учитель математики

2014-2015 год


Пояснительная записка.

Данная рабочая программа по математике для 10-11 классов (базовый уровень) реализуется на основе следующих документов:

1. Федеральный компонент государственного стандарта среднего (полного) общего

образования на базовом уровне РФ / Сборник нормативных документов. Математика / сост. Э.Д. Днепров, А.Г. Аркадьев. – 2-е изд. стереотип. – М.: Дрофа, 2008

2. Примерная программа среднего (полного) общего образования по математике на базовом уровне, рекомендованная Министерством образования и науки РФ / Сборник нормативных документов. Математика / сост. Э.Д. Днепров, А.Г. Аркадьев. – 2-е изд. стереотип. – М.: Дрофа, 2008

3. Авторская программа: Программы. Математика. 5 – 6 классы. Алгебра 7 – 9 классы.

Алгебра и начала математического анализа. 10 – 11 классы / авт.-сост. И.И. Зубарева, А.Г. Мордкович. – 2-е изд., испр. и доп. – М.: Мнемозина, 2009. – 63 с.

4. Авторская программа: Программы общеобразовательных учреждений. Геометрия. 10 – 11 классы / составитель Т.А. Бурмистрова. – М.: Просвещение, 2009. – 96 с 

Задачи III ступени образования:

Задачами среднего (полного) общего образования являются развитие интереса к познанию и творческих способностей обучающегося, формирование навыков самостоятельной учебной деятельности на основе дифференциации обучения. В дополнение к обязательным предметам вводятся предметы по выбору самих обучающихся в целях реализации интересов, способностей и возможностей личности.
Цель курса:

Изучение математики в старшей школе на базовом уровне направлено на достижение следующих целей:

  • формирование представлений о математике как универсальном языке науки, средстве моделирования явлений и процессов, об идеях и методах математики;
  • развитие логического мышления, пространственного воображения, алгоритмической культуры, критичности мышления на уровне, необходимом для обучения в высшей школе по соответствующей специальности, в будущей профессиональной деятельности;
  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни, для изучения школьных естественнонаучных дисциплин на базовом уровне, для получения образования в областях, не требующих углубленной математической подготовки;
  • воспитание средствами математики культуры личности: отношения к математике как части
  • общечеловеческой культуры: знакомство с историей развития математики, эволюцией математических идей, понимания значимости математики для общественного прогресса.

В рамках указанных содержательных линий решаются следующие задачи:

  • систематизация сведений о числах; изучение новых видов числовых выражений и формул; совершенствование практических навыков и вычислительной культуры, расширение и совершенствование алгебраического аппарата, сформированного в основной школе, и его применение к решению математических и нематематических задач;
  • расширение и систематизация общих сведений о функциях, пополнение класса изучаемых функций, иллюстрация широты применения функций для описания и изучения реальных зависимостей;
  • изучение свойств пространственных тел, формирование умения применять полученные знания для решения практических задач;
  • совершенствование интеллектуальных и речевых умений путем обогащения математического языка, развития логического мышления;
  • знакомство с основными идеями и методами математического анализа.

Требования к уровню математической подготовки

В результате изучения курса математики 10-11 классов обучающиеся должны:

знать

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
  • вероятностный характер различных процессов окружающего мира.

Алгебра

уметь

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

Функции и графики

уметь

  • определять значение функции по значению аргумента при различных способах задания функции;
  • строить графики изученных функций;
  • описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
  • решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

Начала математического анализа

уметь

  • вычислять производные и первообразные элементарных функций, используя справочные материалы;
  • исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
  • вычислять в простейших случаях площади с использованием первообразной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

Уравнения и неравенства

уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства,
  • простейшие иррациональные и тригонометрические уравнения, их системы;
  • составлять уравнения и неравенства по условию задачи;
  • использовать для приближенного решения уравнений и неравенств графический метод;
  • изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:построения и исследования простейших математических моделей;

Элементы комбинаторики, статистики и теории вероятностей

уметь

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
  • вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: анализа реальных числовых данных, представленных в виде диаграмм, графиков; анализа информации статистического характера;

Место предмета в базисном учебном плане

Рабочая программа рассчитана на 102 часа, по 3 часа в неделю. С учетом уровневой специфики 11 класса выстроена система уроков, предполагающая увеличение часов на основные темы алгебры и начал анализа в старшей школе, на отработку техники решения основных задач и подготовку к ЕГЭ. В течение года возможны коррективы календарно – тематического планирования, связанные с объективными причинами.

Формы контроля

Формы промежуточной и итоговой аттестации: Промежуточная аттестация проводится в форме математических диктантов, контрольных и самостоятельных работ.

текущий: самостоятельная работа, проверочная работа, математический диктант, тест, опрос;

тематический: зачет, контрольная работа. 

Содержание рабочей программы

  1. Степени и корни. Степенные функции - 15ч.

Понятие корня n-й степени из действительного числа. Функции у = , их свойства и графики. Свойства корня  n-й степени. Преобразование выражений, содержащих радикалы.

Обобщение понятия о показателе степени. Степенные функции, их свойства и графики.

  1. Показательная и логарифмическая функции - 24ч.

Показательная функция, её свойства и график. Показательные уравнения. Показательные неравенства.

Понятие логарифма. Логарифмические уравнения. Логарифмические неравенства. Переход к новому основанию логарифма.

  1. Первообразная и интеграл - 9ч.

Первообразная. Определённый интеграл.

  1. Элементы математической статистики, комбинаторики и теории вероятностей - 11ч.

Статистическая обработка данных. Простейшие вероятностные задачи. Сочетания и размещения. Формула бинома Ньютона. Случайные события и их вероятности.

  1. Уравнения и неравенства. Системы уравнений и неравенств - 17ч.

Равносильность уравнений. Общие методы решения уравнений: замена уравнения h(f(x)) = h(g(x)) уравнением  f(x) = g(x), разложение на множители, введение новой переменной, функционально-графический метод.

Решение неравенств с одной переменной. Равносильность неравенств, системы и совокупности неравенств, иррациональные неравенства, неравенства с модулями.

Системы уравнений. Уравнения и неравенства с параметрами.

  1. Обобщающее повторение - 26ч.

Выражения и преобразования. Уравнения и системы уравнений. Неравенства. Функции. Производная. Первообразная. Текстовые задачи. Задачи с параметром.

 

Нормативы

Учебный цикл

Всего учебных часов

Контрольных работ

Первообразная и  интеграл

8

1

Степени и корни. Степенные функции.

18

1

Показательная и логарифмическая функции

29

3

Уравнения и неравенства. Системы уравнений и неравенств

20

1

Элементы математической статистики, комбинаторики и теории вероятностей

15

1

Повторение

12

1

План

Дата

Тема

Дидактические материалы

Использование современных технологий

Контроль

Тип урока

Тематичес-кий

Текущий

Итоговый

Степени и корни. Степенные функции.(15ч)

 

1-2

Понятие корня n-й степени из действительного числа

+

 1,2

3-4

Функции , их свойства и графики

Табл.

+

 1,2

5-6

Свойства корня n-й степени

+

 1,2

7-9

Преобразование выражений, содержащих радикалы

+

1,2

10

Контрольная работа№1

+

 3

11-12

Обобщение понятия о показателе степени

Табл.

+

 1,2

13-15

Степенные функции, их свойства и графики (включая дифференцирование степенной функции с рациональным показателем)

Табл.

+

+

 1,2

Показательная и логарифмическая функции(24)

 

16-18

 Показательная функция, ее свойства и график

Табл.

+

+

 1,2

19-21

Показательные уравнения  и неравенства

+

 1,2

22

Контрольная работа№2

23

Понятие логарифма

+

1,2

24-25

Функция ,ее свойства и график 

Табл.

+

1,2

26-27

Свойства логарифмов

+

+

1,2 

28-30

Логарифмические уравнения

+

1,2

31

Контрольная работа№3

32-34

Логарифмические неравенства

+

 1,2

35-36

Переход к новому основанию логарифма

+

1,2 

37-38

Дифференцирование показательной и логарифмической функций

+

1,2

39

Контрольная работа №4

+

 3

 Первообразная и интеграл

(9ч)

 

40-42

Первообразная и неопределенный интеграл

 

43-45

Определенный интеграл:

Табл.

+

+

 1,2

46

 Контрольная работа №5

+

 3

47-48

Резерв

Элементы математической статистики, комбинаторики и теории вероятностей(11)

 

48-49

Статистическая обработка данных

+

1.2

50-51

Простейшие вероятностные задачи

+

1,2

52-53

Сочетания и размещения

+

1,2

54-55

Формула бинома Ньютона

1,2

56-57

Случайные события и их вероятности

1,2

58

Контрольная работа №6

+

3

Уравнения и неравенства. Системы уравнений и неравенств(17)

 

59-60

Равносильность уравнений

+

1,2

61-63

Общие методы решения уравнений

+

 1,2

64-66

Решение неравенств с одной переменной

+

1,2

67

Уравнения и неравенства с двумя переменными

+

 3

68-70

Системы уравнений

+

 1,2

71-73

Уравнения и неравенства с параметрами

+

1,2 

74-75

Контрольная работа №7

+

3

76-100

Итоговое повторение(26)

 

+

2

101-102

Контрольная работа №8

3

Лист коррекции выполнения тематического планирования

Дата урока, требующего коррекции (пропущенного по причине)

Дата урока, содержащего коррекцию

Номера уроков по тематическому планированию

Форма коррекции (объединение тем, дом. изучение, проверочная работа …)

Причина коррекции (замена урока, болезнь учителя, праздн. день, отмена занятий по приказу…)

Завуч

Утвержде-ние

Подпись

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ  ВЫПУСКНИКОВ

 В результате изучения в 11 классе алгебры и начал математического анализа на базовом уровне ученик должен    

   знать/понимать

  • понятие корня n-й степени из действительного числа и основные свойства корней;
  • определение степенной функции, свойства и графики степенных функций;
  • определение и свойства показательной и логарифмической функций;
  • определение первообразной;
  • правила нахождения первообразных;  
  • определение криволинейной трапеции и интеграла;
  • формулы сочетаний и размещений;
  • формулу бинома Ньютона;
  • общие методы решения уравнений и неравенств;

    уметь

  • находить значение корня n-ой степени из действительного числа;
  • выполнять преобразования с применением свойств степеней;
  • строить графики показательной и логарифмической функций;
  • решать показательные и логарифмические уравнения и неравенства;
  • находить первообразную;
  • вычислять интегралы;
  • применять первообразную и интегралы для нахождения площади криволинейной трапеции;
  • решать простейшие вероятностные задачи;
  • решать уравнения и системы уравнений разными методами;
  • решать простейшие уравнения и неравенства с параметрами;
  • использовать приобретённые знания и умения в практической деятельности для исследования несложных практических ситуаций на основе изученных формул, содержащих радикалы, логарифмы, тригонометрические функции, для решения прикладных задач с применением аппарата математического анализа.

В результате изучения в школе математики на базовом уровне ученик должен

знать/понимать[1]

  • значение математической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
  • значение практики и вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа;
  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности;
  • вероятностный характер различных процессов окружающего мира;

АЛГЕБРА

уметь

  • выполнять арифметические действия, сочетая устные и письменные приемы, применение вычислительных устройств; находить значения корня натуральной степени, степени с рациональным показателем, логарифма, используя при необходимости вычислительные устройства; пользоваться оценкой и прикидкой при практических расчетах;
  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, радикалы, логарифмы и тригонометрические функции;
  • вычислять значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • практических расчетов по формулам, включая формулы, содержащие степени, радикалы, логарифмы и тригонометрические функции, используя при необходимости справочные материалы и простейшие вычислительные устройства;

ФУНКЦИИ И ГРАФИКИ

уметь

  • определять значение функции по значению аргумента при различных способах задания функции;
  • строить графики изученных функций;
  • описывать по графику и в простейших случаях по формуле[2] поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;
  • решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания с помощью функций различных зависимостей, представления их графически, интерпретации графиков;

НАЧАЛА МАТЕМАТИЧЕСКОГО АНАЛИЗА

уметь

  • вычислять производные и первообразные элементарных функций, используя справочные материалы;
  • исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;
  • вычислять в простейших случаях площади с использованием первообразной; 

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

УРАВНЕНИЯ И НЕРАВЕНСТВА

уметь

  • решать рациональные, показательные и логарифмические уравнения и неравенства, простейшие иррациональные и тригонометрические уравнения, их системы;
  • составлять уравнения и неравенства по условию задачи;
  • использовать для приближенного решения уравнений и неравенств графический метод;
  • изображать на координатной плоскости множества решений простейших уравнений и их систем;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • построения и исследования простейших математических моделей;

ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

уметь

  • решать простейшие комбинаторные задачи методом перебора, а также с использованием известных формул;
  • вычислять в простейших случаях вероятности событий на основе подсчета числа исходов;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • анализа реальных числовых данных, представленных в виде диаграмм, графиков;
  • анализа информации статистического характера.

РЕСУРСНОЕ ОБЕСПЕЧЕНИЕ РАБОЧЕЙ ПРОГРАММЫ

Учебно-методический комплект учителя:

  1. Алгебра и начала математического анализа. 10-11 классы. В 2 ч. Ч. 1. Мордкович А. Г. Учебник для учащихся общеобразовательных учреждений (базовый уровень) / А. Г. Мордкович. – 10-е изд., стер. – М.: Мнемозина, 2011.
  2. Алгебра и начала математического анализа. 10-11 классы. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений (базовый уровень) / [А. Г. Мордкович, Л. О. Денищева, Т. А. Корешкова, Т. Г. Мишустина, П. В. Семенов, Е. Е. Тульчинская ]; под ред. А. Г. Мордковича. – 10-е изд., стер. – М.: Мнемозина, 2011.
  3. Алгебра и начала математического анализа. 11 класс. Самостоятельные работы для учащихся общеобразовательных учреждений / Л. А. Александрова; под ред. А. Г. Мордковича. — 4-е изд., испр. и доп. — М.: Мнемозина, 2009.
  4. Алгебра и начала математического анализа. 10-11 классы (базовый уровень): методическое пособие для учителя / А. Г. Мордкович, П. В. Семенов. — М.: Мнемозина, 2010.
  5. Алгебра и начала математического анализа. 11 класс. Контрольные работы для учащихся общеобразовательных учреждений (базовый уровень) / В. И. Глизбург; под ред. А. Г. Мордковича. – М.: Мнемозина, 2009.
  6. А.П. Ершова, В.В. Голобородько. Самостоятельные и контрольные работы по алгебре и началам анализа для 10-11 классов.– М.: Илекса, 2005.
  7. ЕГЭ-2013. Математика: типовые экзаменационные варианты: 10 вариантов / Под ред. А.Л. Семенова, И.В. Ященко. — М.: Издательство «Национальное образование», 2012.
  8. ЕГЭ-2013. Математика: типовые экзаменационные варианты: 30 вариантов / Под ред. А.Л. Семенова, И.В. Ященко. — М.: Издательство «Национальное образование», 2012.
  9. ЕГЭ-2013. Математика: тематический сборник заданий / Под ред. А.Л. Семенова, И.В. Ященко. — М.: Издательство «Национальное образование», 2012.
  10. Отличник ЕГЭ. Математика. Решение сложных задач / ФИПИ авторы- составители: Панферов В.С., Сергеев И.Н. – М.: Интеллект-Центр, 2012.

Учебно-методический комплект ученика:

  1. Алгебра и начала математического анализа. 10-11 классы. В 2 ч. Ч. 1. Мордкович А. Г. Учебник для учащихся общеобразовательных учреждений (базовый уровень) / А. Г. Мордкович. – 10-е изд., стер. – М.: Мнемозина, 2011.
  2. Алгебра и начала математического анализа. 10-11 классы. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений (базовый уровень) / [А. Г. Мордкович, Л. О. Денищева, Т. А. Корешкова, Т. Г. Мишустина, П. В. Семенов, Е. Е. Тульчинская ]; под ред. А. Г. Мордковича. – 10-е изд., стер. – М.: Мнемозина,

Технические средства обучения

          Компьютер, медиапроектор, интерактивная доска, набор чертежных инструментов

Интернет-ресурсы

1. www. edu - "Российское образование" Федеральный портал.

2. www.school.edu - "Российский общеобразовательный портал".

3. www.school-collection.edu.ru/ Единая коллекция цифровых образовательных ресурсов

4. www.mathvaz.ru - docье школьного учителя математики

Документация, рабочие материалы для учителя математики

5. www .festival.1september.ru   Фестиваль педагогических идей "Открытый урок"  




По теме: методические разработки, презентации и конспекты

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.

Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...

Рабочие программы по алгебре 8 класс,автор Ю.Н.Макарычев под редакцией Теляковского и по алгебре и началам математического анализа 11 класс, под редакцией А.Н.Колмогорова

Рабочая программа по алгебре 8 класс, автор Ю.Н.Макарычев под редакцией С.А.Теляковского на 2012-2013 уч.годРабочая программа по алгебре и началам анализа 11 класс под редакцией А.Н.Колмогорова на 201...

Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др

Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...

РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ Класс: 8 (базовый уровень)

Тематический план по алгебре  разработан в соответствии с  Примерной программой основного общего образования по математике, с учетом требований федерального компонента государственного...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс 9 Учитель Асессорова Е.М.

    РАБОЧАЯ ПРОГРАММА       Предмет    алгебра      Класс...