Текстовые задачи на банковские расчеты.
материал для подготовки к егэ (гиа) по алгебре (9 класс) на тему
Текстовые задачи на банковские расчеты с решениями.
Скачать:
Вложение | Размер |
---|---|
tekstovye_zadachi_na_bankovskie_raschety.docx | 25.74 КБ |
Предварительный просмотр:
ЗАДАЧИ НА БАНКОВСКИЕ РАСЧЕТЫ.
А – 100 % – первоначальная величина,
I – п % – (на что изменилось) .
1 тип - А = I 100/ а
2 тип - I = А n /100
3 тип - n % = I100 / А
Постановка задачи в другой форме:
Р - 100 %
S – (100 + а) %
Р = S .100/ (100 + а)
Другая пропорция
I – а %.
S – (100 + а) %
I = аS/(100 + а) , S = И + Р
ЗАДАЧИ:
1.Первоначальная цена товара была 4600 руб. А затем ее подняли на 7 процентов. Определите, на сколько рублей изменилась цена.
Решение:
4600 - Р %
7 процентов – а%,
И =4600.7/100 = 322 руб.
Ответ: 322 руб.
Формула простых процентов.
100 % = А (100 + п) % = Р
Р = А(100 + п)/100 = (А.100 + Ап)/ 100 = А+ Ап/100 = А(1 + п/100)
Р = А (1 + п/100) , Р = А(1 0,01п)
А – первоначальная цена товара (первоначальный вклад),
Р - конечная цена товара ,
+ цена повышенная,
- цена пониженная.
2.Сезонная распродажа в магазине обуви предлагает скидку 20 процентов. Определите, сколько будет стоить пара обуви, если до распродажи она стоила 3150 рублей.
Решение:
Р = 3150 (1 – 0,2) = 2520 руб.
Ответ: 2520 руб.
3.Книжный магазин заказывает в издательстве книгу. При этом, если он заказывает менее 100 экземпляров, то книга стоит 50 рублей, а если более 100 экземпляров, то получит скидку до 5 %. Определите, на сколько выгоднее магазину заказать сразу 150 книг на три месяца, чем каждый месяц заказывать по 50 штук.
Решение:
50= 7500, если заказывать каждый месяц.
Если заказать сразу 150 штук, то Р = 7500( 1 – 0,05) = 7125.
Получит скидку: 7500 – 7125 = 375.
Ответ: выгоднее заказать сразу 150 книг.
Р = А ( 1 а
4. Определить процент и сумму в конце срока, если ссуда в банке составляет 1200 тысячи рублей на 5 лет. Процент (простые проценты) составляет 17 процентов годовых.
Решение:
Р = 1200(1 + 0,17
Ответ: 2220000.
5.Для покупки автомобиля взят кредит на сумму 650 тысяч рублей на 2 года. Процентная ставка составляет 13 % годовых. Выплаты производят каждый месяц. Вычислить наращенную сумму долга, ежемесячную сумму выплат, если проценты простые.
Решение:
А = 650 тыс. руб.
п = 2
а = 13 %
Р = 650(1 + 0,13
R = 819/2 (за 12 месяцев).
Ответ: 34,125 тыс. руб.
R =
Формула сложных процентов.
S = P , m – количество месяцев.
6. За хранение денег банк начисляет вкладчику три процента годовых. Вкладчик положил 10000 руб. В течение 5 лет деньги хранились. Определите, какая сумма денег будет у вкладчика к концу срока.
Решение:
S =10000 = 11592, 74 руб.
Ответ: 11592,74 руб.
7. За хранение денег банк начисляет вкладчику 45 годовых. Вкладчик положил 25 тыс. руб на два года. Определите, какую сумму получит он в конце срока, если процент начисления ежемесячный (сложные проценты).
Решение:
S = 25000 ( = 27078,57.
Ответ: 27078,57.
8. Сделан вклад в размере 50 тыс. руб. под 14% годовых. Определите, за какой срок в годах удвоенная сумма удвоится, если простые проценты начисляются раз в год. Если сложные проценты.
Решение:
- S = P ( 1
- S = P , N = nm
Из формулы (2) выразим n = = = 5.1224.
Ответ: 5 лет.
Дифференциальные платежи – выплаты уменьшаются с каждым разом.
Аннуитетные платежи – рассчитав. на уменьшение/ количество лет -
расчетная цена одинаковая.
9. В четверг акции компании подорожали на некоторое число процентов, а в пятницу подешевели на то же самое число процентов. В результате они стали стоить на 9 % дешевле, чем при открытии торгов в четверг. Определите, на сколько процентов подорожали акции компании в четверг
Решение:
А( 1 + х/100)(1 – х/100) = А(1 -81/10000)
Ответ: 3%.
10. Предприниматель собирается взять ссуду в коммерческом банке. Определите максимальную величину суммы (в руб.), которую он может взять у банка под 20% годовых, если он хочет полностью расплатиться с банком в течение двух лет, выплачивая в конце каждого года не более чем 90000 руб.
Решение:
Максимальную сумму, которую предприниматель может взять в банке, с условием выплаты в конце каждого года 90 тыс. руб. обозначим х, тогда долг банку после погашения 90т.р. составит 1,2х – 90;
еще через год долг банку составит:
1,2(1,2х – 90), что по условию задачи составит 90 тыс. руб.,
1,2(1,2х – 90) = 90
х= 137,5
Ответ: 137500.
11. Вкладчик открыл счет в банке на сумму 20 тыс. руб. через год после начисления банком процентов он пополнил счет на 30 тыс. руб. а еще через год сумма на его счете составила 60950 руб. Определите, сколько процентов годовых выплачивает банк по виду вклада, открытого вкладчиком.
Решение:
Пусть банк выплачивает р % годовых, тогда через год после пополнения счета на 30 тыс. руб. сумма на счете вкладчика будет составлять:
( 1 + р)
Еще через год, после начисления банком процентов, эта сумма возрастет до
(р
Р = 0,15.
Таким образом, по виду вклада открытого вкладчиком, банк выплачивает 15 % годовых.
Ответ: 15.
12. Десятого января все книги в магазине подешевели на некоторое число процентов, а спустя несколько дней подорожали на то же самое число процентов от установившейся цены. В результате цены стали на 0,25 % меньше, чем до десятого января. Определите, на сколько процентов подешевели книги десятого января.
Решение:
Примем стоимость за 1. Пусть х-количество %, на которые подешевели книги, тогда
1 – 0,01х – новая стоимость,
( 1 – 0,01х) + (1 – 0,01х) - стоимость после подорожания
х = 5
книги подешевели на 5%.
Ответ: 5.
13. Компания «Удача» начала инвестировать средства в перспективную отрасль в 2009 году, имея капитал в размере 10000 долларов. Каждый год, начиная с 2010 года, она получала прибыль, которая составляла 100% от капитала предыдущего года. А компания «Успех» начала инвестировать средства в другую отрасль в 2010 году, имея капитал в размере 5000 долларов, и, начиная с 2011 года, ежегодно получала прибыль, составляющую 300% от капитала предыдущего года. Определите, на сколько долларов капитал одной из компаний (более успешной) был больше капитала другой компании к концу 2014 года, если прибыль из оборота не изымалась.
Решение:
Капитал «Удачи» каждый следующий год составляет 100% + 100% = 200% от предыдущего года, т.е. в два раза больше. Капитал «Успеха» каждый следующий год составляет 100% + 300% = 400%, т. е. в четыре раза больше. Через пять лет капитал «Удачи» составил: 10000= 320000 долларов,
Капитал «Успеха» через четыре года составил:
5000 = 1280000 долларов,
1280000 – 320000 = 960000 (долларов).
Ответ: 960000.
По теме: методические разработки, презентации и конспекты
Прогрессии и банковские расчеты
Теоретический и практический материал по арифметической и геометрической прогрессиям развивает и совершенствует навыки вычисления элементов прогрессии по формулам и программам на язы...
Проценты и банковские расчеты
Творческий проект группы учащихся...
Разработка урока "Прогрессии и банковские расчеты"
Урок алгебры в 9-м классе с использованием групповой формы работы....
Методическая разработка: Система упражнений по теме :Решение задач на банковский процент"
В предложенном методическом материале предложена система упражнений первых уроков на формирование навыка решения задач на сложный процент....
Урок "Проценты. Прогрессии. Банковские расчеты"
Конспект урока по теме: "Проценты. Прогрессии. Банковские расчеты"...
Сценарий проведения научно-практической конференции учителей «Продуктивная деятельность с различными источниками информации (текстовой информацией, таблицами, графиками, диаграммами, рисунками, текстовыми задачами и др.)»
Актуальная проблема сегодняшнего образования - развитие умений и навыков работы с текстом. На это нацеливает основная образовательная программа Федеральных государственных образовательных стандартов ...
Методическая разработка занятия проведенного в рамках внеурочной деятельности: «ОГЭ по математике: текстовые задачи» по теме «Решение текстовых задач. Задачи на движение»
Тип занятия :обобщения и систематизации знанийЦели:1) Формирование предметных результатов: составления математических моделей на примерах текстовых задач на движение2) Формиров...