Рабочая программа и КТП факультатива «Математика для всех».5 класс по УМК И.И.Зубарева, А.Г.Мордкович
рабочая программа по алгебре (5 класс) по теме

Романова Анна Владимировна

Данный курс расчитан на 34 часа (1 час в неделю). Это время, которое позволяет детям увидить и ощутить дополнительные моменты изучения математики. Более широко рассмотреть изучаемые на уроках темы. Найти для себя что-то новое и интересное. Ведь заинтересовать детей, привить им любовь к изучаемому предмету и доказать, что математика  не "сухая " наука-  моя цель.

Скачать:

ВложениеРазмер
Microsoft Office document icon matematika_dlya_vsekh_5_kl.doc95 КБ

Предварительный просмотр:

Краснодарский край

муниципальное образование город Армавир

муниципальное автономное общеобразовательное учреждение-

средняя общеобразовательная школа № 11

имени Вячеслава Владимировича Рассохина

УТВЕРЖДЕНО

решение педсовета протокол № 1

от 30.08.2012г.

РАБОЧАЯ ПРОГРАММА

1I ВИДА

Факультатива «Математика для всех».

Ступень обучения (класс) среднее (полное) общее образование, 5 классы

Количество часов 34.

Рабочая программа составлена на основе учебного пособия:  

Математика. 5 класс: для общеобразовательных учреждений/ И.И.Зубарева, А.Г.Мордкович. – М.: Мнемозина, 2009

Эксперты:_________________________________________________________

Пояснительная записка

Курс математики 5–6-х классов – важное звено математического образования и развития школьников. На этом этапе заканчивается в основном обучение счёту на множестве рациональных чисел, формируется понятие переменной, и даются первые знания о приёмах решения линейных уравнений, продолжается обучение решению текстовых задач, совершенствуются и обогащаются умения геометрических построений и измерений. Серьёзное внимание уделяется обучению детей проводить рассуждения и простые доказательства, давать обоснования выполняемых действий. При этом учащимися постепенно осознаются правила выполнения основных логических операций над высказываниями.

Процесс обучения в школе предполагает, в частности, решение таких важных задач как обучение детей способам усвоения системы знаний, с одной стороны, а с другой - активизацию их интеллектуальной деятельности. Это обуславливает выделение проблемы управления интеллектуальной деятельностью школьников в число наиболее важных для педагогики. Создание условий для максимальной реализации познавательных возможностей ребенка способствует тому, что обучение ведет за собой развитие.

Наибольшую остроту в контексте этой проблемы приобретает вопрос об определении условий, в которых бы наилучшим образом раскрывались и корригировались познавательные возможности неуспевающих школьников. Это обусловлено, по меньшей мере, двумя обстоятельствами: многообразием и большой вариативностью причин неуспеваемости, а также тем, что в начальных классах у детей развиваются познавательные возможности для получения в последующем системы знаний. Известно, что в этот период формируются необходимые предпосылки для развития умственных операций и навыки учебы, созревают возможности эмоционально-волевой регуляции деятельности.

АКТУАЛЬНОСТЬ:

Причины недостаточной подготовленности школьников, окончивших начальную школу, к изучению дальнейшего курса математики самые разные. И не всегда они связаны с отсутствием общих или специальных способностей, а могут объясняться и слабым здоровьем ребёнка, не позволяющим ему в полную силу включаться в школьную работу, и психологической неподготовленностью ребёнка к школе, и индивидуальным темпом его развития, и педагогическая запущенность, и др.

Отличительной особенностью отстающих в учении школьников является слабое развитие у них продуктивной деятельности. Это выражается в несформированности таких операций мышления, как анализ и синтез, в неумении выделить существенные признаки и провести обобщение, в низком уровне развития абстрактного мышления. Низкий уровень общего развития, серьёзные пробелы в математической подготовке за курс начальной школы не позволяют им овладевать содержанием курса математики 5 класса даже на минимальном уровне, что исключает возможность хотя бы удовлетворительного изучения данного предмета и смежных дисциплин в последующих классах.

Цели факультативного курса: подготовить учащихся 5–6-х классов к изучению курсов алгебры и геометрии на II ступени обучения в соответствии с зоной потенциального развития каждого школьника.

 Задачи:

  • развитие вычислительных умений и навыков до уровня, позволяющего использовать их при решении задач по математике и смежным дисциплинам;
  • развитие памяти, внимания и мышления.
  • выработать умение пользоваться полученными знаниями.

Ожидаемые результаты:

На основе поставленных задач предполагается, что учащиеся достигнут следующих результатов:

  • Производить в уме арифметические действия (сложение и вычитание трёхзначных чисел, умножение двух-и трёхзначных чисел на однозначное число, умножение и деление любого числа на 10, 100, 1000, …).
  • Уверенно выполнять письменно действия с натуральными числами, десятичными и обыкновенными дробями (не сложные).
  • Решать несложные задачи арифметическим (алгебраическим) способом.
  • Распознавать и изображать геометрические фигуры (треугольник, квадрат, прямоугольник, круг, окружность).
  • При объяснении решений учащимися должна звучать грамотная математическая речь

Критерии и механизм отслеживания результатов

1) Для преодоления "комплекса неудовлетворительных отметок" на занятиях факультатива вводится шести балльная система отметок, которая позволяет ученикам отойти от стереотипа школьных отметок. Например, данная система отметок позволяет ученикам относиться к полученной двойке ни как к неудовлетворительной отметке, а как к двум баллам, приближающим его к итоговому положительному результату. Предусмотренные диагностики разбиты по баллам. Итоги подводятся по двум критериям: усвоен курс на удовлетворительном уровне и на неудовлетворительном уровне (т.е. определяются максимальное и минимальное количество баллов за весь курс).

Выставляется: 6 баллов – при безупречном выполнении;

5 баллов – при одной ошибке;

4 балла – при двух ошибках;

3 балла – при трёх ошибках;

2 балла – при четырёх ошибках;

1 балл – при пяти ошибках.

Если ученик набрал не менее 21 балла, курс считается им усвоенным на удовлетворительном уровне, если набрано менее 21 балла, то – на неудовлетворительном.

2) Для определения уровня развития познавательных способностей использовались следующие методики: память (методика 10 слов), внимание (корректурная проба), мышление (“Анаграммы” (теоретический анализ), методика “Простые аналогии” (или “Сходство между понятиями”), методика "Закономерности числового ряда”, методика “Выделение существенных признаков”, методика “Классификация” или “Исключение понятий”).

Содержание программы

5-й КЛАСС (1 час в неделю, всего 34 часа)

Основы математики (17 часов)

Приёмы устного счёта.. Как люди научились считать. Древнеримская нумерация. Египетская нумерация. Нумерация индейцев майя и африканцев. Древнегреческая и древнеславянская нумерация. Вавилонская нумерация. Гипотеза происхождения формы арабских цифр. Старинные занимательные задачи. Пятое математическое действие. Числовые головоломки. Решение нестандартных задач.

Открытия в арифметике, сделанные юными математиками. Логика и смекалка. Решение логических задач. Математические игры. Круглый стол  «В стране логических примеров». Приёмы рационального счёта. Задачи на «переливание». Решение задач на «переливание».Задачи на взвешивание. Решение задач на «взвешивание». Задачи на "движение". Решение задач на «движение». Искусство отгадывать числа.. Пифагор., Архимед. П.Ферма.

Решение задач-ребусов.

Геометрия вокруг нас(4 часа)

Геометрические фигуры. Треугольник, прямоугольник, квадрат, окружность, круг, их свойства. Решение задач на построение.

Занимательное в математике  (13 часов)

Старинные меры длины. Возникновение мер площадей. Единицы измерения площадей. Нахождение площадей различных земельных участков. Решение задач на нахождение площадей. Составление плана квартиры и нахождение её площади. Измерение сыпучих тел. Измерение объёма жидкости. Единицы измерения сыпучих и жидких тел. Задачи с практическим содержанием.

Денежные системы мер различных народов. Современные денежные единицы. Решение задач с использованием различных денежных единиц.

Меры времени различных народов. Математические задачи с использованием циферблата часов. Календари различных народов. Часы-календарь.

Старинные меры массы. Задачи с практическим содержанием на нахождение массы тела. Попытки создания единой системы мер. Метрическая система мер. Задачи на сравнение вычислений в различных системах мер.

Старые русские меры. Решение задач. Простейшие комбинаторные задачи. Комбинации и расположения. "Творцы математики". Решение и составление кроссвордов.

Простейшие комбинаторные задачи. Комбинации и расположения. Решение комбинаторных задач. Занятие "Творцы математики". Решение и составление кроссвордов.

Литературы:

  1. Математика. 5 класс: Учебник для общеобразовательных учреждений/ И.И.Зубарева, А.Г.Мордкович – М.: Мнемозина, 2006-2009.
  2. Математика. 5 класс: Рабочая тетрадь: Учебное пособие для общеобразовательных учреждений/ И.И.Зубарева, А.Г.Мордкович – М.: Мнемозина, 2006-2009. – М.: Мнемозина, 2009.
  3. Математика. 5-6 классы: Методическое пособие для учителя/ И.И.Зубарева, А.Г.Мордкович – М.: Мнемозина, 2008.
  4. И.И.Зубарева, В.Г.Гамбарин. Математика. Сборник задач и упражнений – М.: Мнемозина, 2008.
  5. И.И.Зубарева, И.П.Лепешонкова. Математика. Контрольные работы. – М.: Мнемозина, 2009.
  6. И.И.Зубарева и др. Математика. Самостоятельные работы. – М.: Мнемозина, 2010.
  7. Е.Е.Тульчинская. Математика. Блицопрос. Пособие для учащихся. – М.: Мнемозина, 2009.
  8. Е.Е.Тульчинская. Математика. Тесты. Пособие для учащихся. – М.: Мнемозина, 2009.
  9. Гусева И.Л., Пушкин С.А., Рыбакова Н.В. Сборник тестовых заданий для тематического и итогового контроля. Математика 5 класс. – М.: Интеллект-Центр, 2008.
  10. С.Н.Олехник и др. Старинные занимательные задачи. – М.,1998.
  11. http://festival.1september.ru/articles/549612/

Календарно-тематическое планирование «Математика для всех» .

№ занятия

Тема занятия

Количество часов

Дата проведения

I. Основы математики – 17 часов

1.

Приёмы устного счёта

1

2.

Как люди научились считать. Древнеримская нумерация.

1

3.

Египетская нумерация. Нумерация индейцев майя и африканцев.

1

4.

Древнегреческая и древнеславянская нумерация. Вавилонская нумерация.

1

5.

Гипотеза происхождения формы арабских цифр. Старинные занимательные задачи.

1

6.

Пятое математическое действие. Числовые головоломки. Решение нестандартных задач.

1

7.

Открытия в арифметике, сделанные юными математиками

1

8.

Логика и смекалка

1

9.

Решение логических задач

1

10

Математические игры. Круглый стол

 « В стране логических примеров»

1

11.

Приёмы рационального счёта . Задачи на «переливание».

1

12.

Решение задач на «переливание».

1

13.

Задачи на взвешивание.

1

14.

Решение задач на «взвешивание».

1

15.

Задачи на "движение"

1

16.

Решение задач на «движение».

1

17.

Искусство отгадывать числа.. Пифагор, Архимед., П.Ферма.

Решение задач-ребусов.

1

II. Геометрия вокруг нас- 4часа 

18.

Геометрические фигуры

1

19.

Треугольник. Решение задач на построение.

1

20.

Прямоугольник, квадрат. Решение задач на построение.

1

21.

Окружность, круг. Решение задач на построение.

1

III. Занимательное в математике- 13часов

22.

Старинные меры длины. Возникновение мер площадей. Единицы измерения площадей.

1

23.

Нахождение площадей различных земельных участков. Решение задач на нахождение площадей.

1

24.

Составление плана квартиры и нахождение её площади.

1

25.

Измерение сыпучих тел. Измерение объёма жидкости. Единицы измерения сыпучих и жидких тел. Задачи с практическим содержанием.

1

26.

Меры времени различных народов. Математические задачи с использованием циферблата часов.

1

27

Календари различных народов. Часы-календарь.

1

28.

Старинные меры массы. Задачи с практическим содержанием на нахождение массы тела.

1

29

Попытки создания единой системы мер. Метрическая система мер.

1

30

Задачи на сравнение вычислений в различных системах мер.

1

31

Простейшие комбинаторные задачи. Комбинации и расположения.

1

32.

Решение комбинаторных задач.

1

33.

Итоговое занятие "Творцы математики".

34.

Решение и составление кроссвордов.

1

ИТОГО

34


По теме: методические разработки, презентации и конспекты

Рабочая программа по учебному курсу "Математика" в 5-6 классах

Рабочая программа включает пять разделов: пояснительную записку, содержание рабочей программы, требования к уровню подготовки, учебно-методическое и информационное обеспечение курса, календарно-темати...

Рабочая программа элективного курса по математике для 10-11 классов "Параметры и модули"

Данная программа позволяет сформировать у учащихся умения и навыки по решению задач с параметрами и модулями, сводящихся к исследованию линейных и квадратных уравнений, неравенств для подготовки к ЕГЭ...

Рабочая программа элективного предмета по математике для 10-11 классов "Решение нестандартных задач"

Программа содержит пояснительную записку,цели,формы и методы работы,требования к уровню подготовки,учебно-тематический план,список используемой литературы....

Рабочая программа по алгебре и началам анализа 10-11 класс к учебнику "Алгебра и начала анализа10-11" мордкович А.Г.

Рабочая программа составлена на основе принципов коррекционно-развивающего обучения  детей-инвалидов дистанционно....

Итоговая контрольная работа по математике за курс 5 класса к учебнику И. И. Зубарева, А.Г. Мордкович.

Итоговая контрольная административная контрольная работа за курс 5 класса по математике к учебнику И.И. Зубарева, А.Г. Мордкович. с критериями оценок и ответами. Удобное разделение по вариантам в виде...

Рабочая программа элективного курса по математике для 9-го класса «Математика для каждого»

Предлагаемый элективный курс адресован учащимся 9-х классов. Его цель - реализация предпрофильной подготовки учащихся, организация систематического повторения и углубления курса математики....

Рабочая программа внеурочной деятельности по математике для 7-8 классов "Вертикальная математика для всех"

Рабочая программа курса составлена на основе учебного пособия: Шаповалов, А.В., Ященко, И.В. "Вертикальная математика для всех. Готовимся к задаче С-6 с 6 класса." - М.: МЦНМО, 2014. Предназ...