Рабочая программа по математике 6 класса
рабочая программа по алгебре (6 класс) по теме
Рабочая программа составлена по требованиям ФГОС
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma_po_matematike_6_klass.docx | 32.59 КБ |
kalendarno-tematicheskoe_planirovanie_po_matematike_6_kl.docx | 35.3 КБ |
Предварительный просмотр:
Муниципальное бюджетное общеобразовательное учреждение
Хондергейская средняя общеобразовательная школа
«Рассмотрено» на заседании Рабочей группы по введению ФГОС Протокол № от « » 2013 г. | «Согласовано» Заместитель директора по УВР « » 2013 г. | «Утверждено» Директор школы ________ / Сат А.С./ Приказ № от « » 2013 г. |
Рабочая программа
по предмету «Математика»
6 класс
на 2013 – 2014 учебный год
Составитель:
Ондар У.Б.
учитель математики и физики
с.Хондергей
2013 г.
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая программа по математике, составлена на основе закона «Об образовании» от 10.07.1992, федерального государственного образовательного стандарта от 17.12.2010г. №18-97, примерной программы основного общего образования в соответствии с учебным планом по учебным предметам (математика 5-9 – М., Просвещение 2011г.), УМК:
- Учебник «Математика» 6 класс. Авторы: Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И.
- Рабочие тетради «Математика» 6, класс (в двух частях). Автор Рудницкая В.Н.
- Контрольные работы «Математика» 6, класс. Авторы: Жохов В.И., Крайнева Л.Б.
- Математические диктанты 6, классы. Авторы: Жохов В.И., Митяева И.М.
- Математический тренажер 6, классы. Авторы: Жохов В.И., Погодин В.Н.
- Учебные интерактивные пособия к учебникам «Математика» 5-6 классы на CD. Авторы: Виленкин Н.Я. и др.Н. Я. Виленкин, В.И. Жохов, А.С. Чесноков и др. Математика 5,6.
Настоящая примерная программа курса математики для 6 класса продолжает соответствующую программу 5 класса и ставит перед собой главной целью формирование у школьников основ научного (математического) мышления, позволяющих продолжать обучение в основной и старшей школе.
Задачи изучения математики в 6 классе:
- развитие логического и критического мышления, формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимых для различных сфер человеческой деятельности;
- овладение математическими знаниями и умениями, необходимыми для продолжения обучения в основной и старшей школе (7-11 классы), изучения смежных дисциплин и применения их в повседневной жизни.
- развитие представления о математике, как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования.
Общая характеристика программы
Программа ориентирована, главным образом, на формирование научных (математических) понятий, а не только лишь на выработку практических навыков и умений. Это предполагает особую организацию учебного процесса в форме учебной деятельности школьников.
Содержание учебной деятельности должно развертываться в теоретической форме – от общего к частному, от абстрактного к конкретному. Освоение понятий должно происходить не в форме отработки словесных формулировок, а путем введения учащихся в новый круг задач и включением их в деятельность по поиску общего способа их решения.
Поиск способа решения новой задачи является мотивационным ядром учебной деятельности, той ценностной установкой учеников, которая складывается в виде формального эффекта обучения как личностно-смысловое образование, основа желания и умения учиться.
Необходимость поиска способа решения новой задачи не диктуется требованиями учителя, учебника или программы, она должна быть обусловлена для детей внутренней логикой содержания обучения. Когда ученики обнаруживают, что задача не может быть решена теми способами, которыми они уже владеют, они сами заявляют о необходимости поиска новых способов действия. Иными словами, уже начав действовать, уже стремясь получить результат, дети фиксируют невозможность его немедленного достижения и необходимость открытия «чего-то нового». Таким образом новое понятие или способ действия не возникает для детей случайно; каждое следующее понятие с необходимостью вытекает из предыдущего. При этом принципиально, что поисковые действия детей (их пробы, мнения, предложения, вопросы) должны быть направлены не на внешние чувственно-представленные, непосредственно наблюдаемые свойства вещей, а на общий принцип их строения. Вскрывая этот общий принцип посредством собственных действий, осуществляемых не в словесной, а предметно-чувственной форме, ребенок тем самым обнаруживает существенное отношение, лежащее в основании нового понятия.
Отношение, которое дети обнаруживают, преобразуя объект изучения, не обладает чувственной наглядностью, оно нуждается в особом – модельном способе презентации. При этом не всякое изображение можно назвать учебной моделью, а лишь такое, которое отображает внутренние особенности объекта, не наблюдаемые непосредственно, и обеспечивает их дальнейший анализ. Учебная модель, выступая как продукт мыслительного анализа, затем сама может стать особым средством мыслительной деятельности.
С одной стороны, в процессе построения модели происходит абстракция отношения от его предметных носителей. С другой стороны, уже построенная модель, в которой отношение представлено материально, позволяет преобразовывать ее, открывая новые свойства этого отношения. Преобразовывая и переконструируя учебную модель, школьники получают возможность изучать свойства отношения как такового, без «затемнения» привходящими обстоятельствами. Представленная моделью абстракция затем конкретизируется в различных частных условиях, что позволяет применять найденный общий способ к целому классу частных задач.
Для того чтобы дети смогли через собственные поисковые действия открыть новый способ действия, необходимы особые формы организации совместной учебной деятельности класса и учителя. Основой этой организации является общеклассная дискуссия, в которой каждое высказанное предложение оценивается остальными участниками обсуждения с точки зрения соответствия способа действия и достигнутого результата. Предложения учителя подлежат такому же контролю и оценке, что и предложения учеников. При этом достоинства и недостатки предлагаемых способов действия оцениваются содержательно, и ученики участвуют в выработке критериев контроля и оценки наряду с учителем. Благодаря этому у школьников складывается способность к самоконтролю и самооценке как базисным компонентам умения учиться.
Осуществление школьниками учебной деятельности способствует формированию у них таких мыслительных действий, как рефлексия, анализ и планирование, являющихся основой теоретического мышления и, одновременно развитию других познавательных процессов – восприятия, воображения, памяти. Это дает основание говорить о развивающем значении специальной организации учебной деятельности школьников.
Требования к результатам обучения
К важнейшим личностным результатам изучения курса математики в 6 классе относятся:
- познавательный интерес, установка на поиск способов решения математических задач;
- готовность ученика целенаправленно использовать знания в учении и повседневной жизни для исследования математической сущности предмета (явления события, факта);
- способность характеризовать собственные знания, устанавливать какие из предложенных задач могут быть решены;
- критичность мышления.
К важнейшим метапредметным результатам изучения курса является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
- самостоятельно обнаруживать и формулировать учебную проблему, определять цель УД;
- выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
- составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
- разрабатывать простейшие алгоритмы на материале выполнения действий с натуральными числами, обыкновенными и десятичными дробями, положительными и отрицательными числами;
- сверять, работая по плану, свои действия с целью и при необходимости исправлять ошибки самостоятельно (в том числе и корректировать);
- совершенствовать в диалоге с учителем самостоятельно выбранные критерии оценки.
Познавательные УУД:
- формировать представление о математической науке как сфере человеческой деятельности, о ее значимости в развитии цивилизации;
- проводить наблюдение и эксперимент под руководством учителя;
- осуществлять расширенный поиск информации с использованием ресурсов библиотек и Интернета;
- определять возможные источники необходимых сведений, анализировать найденную информацию и оценивать ее достоверность;
- использовать компьютерные и коммуникационные технологии для достижения своих целей;
- создавать и преобразовывать модели и схемы для решения задач;
- осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;
- анализировать, сравнивать, классифицировать и обобщать факты и явления;
- давать определения понятиям.
Коммуникативные (УУД):
- самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
- в дискуссии уметь выдвигать аргументы и контраргументы;
- учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения и корректировать его;
- понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты (гипотезы, аксиомы, теории);
- уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.
К важнейшим предметным результатам изучения курса математики в 6 классе относятся:
- способность выявлять отношения между величинами в предметных ситуациях и в ситуациях, описанных в текстах; представлять выделенные отношения в виде различных моделей (знаковых, графических); решать задачи на различные отношения межу величинами;
- владение алгоритмами арифметических действий с рациональными числами. Умение выполнять вычисления, используя правила порядка действий, свойства действий. Умение находить рациональные способы вычислений;
- умение выявлять и описывать закономерности в структурированных объектах (числовых последовательностях, геометрических узорах и т.п.);
- умение изображать решения простейших неравенств с одной переменной;
- умение изображать точки на плоскости по их координатам и находить координаты точек на плоскости; представлять решения систем и совокупностей простейших неравенств на координатной плоскости, описывать прямые параллельные осям координат, и области, ограниченные такими прямыми, с помощью систем и совокупностей простейших неравенств;
- умение решать линейные уравнения с одним неизвестным, использовать уравнения при решении задач;
- умение строить описания геометрических объектов, и конструировать геометрические объекты по их описанию, выполнять простейшие построения циркулем и линейкой;
- умение измерять геометрические величины разными способами (прямое измерение, измерение с предварительным преобразованием фигуры, с использованием инструментов, вычисления по формулам);
Место предмета
На изучение предмета отводится 5 часов в неделю, итого 175 часов за учебный год. В конце изучения каждой темы предусмотрен резервный урок, который может быть использован для решения практико-ориентированных задач, нестандартных задач по теме, для защиты материалов и при работе с историческим содержанием курса. Предусмотрены 8 тематических контрольных работ и 1 итоговая.
Помимо контрольных работ система оценивания включает следующие виды контроля:
- фронтальный опрос;
- индивидуальная работа по карточкам;
- проверка домашней работы;
- самостоятельная работа;
- тестовая работа;
- математический диктант;
- практическая работа;
- контрольная работа.
Учебное и учебно-практическое обеспечение
- таблицы по математике для 6 классов;
- таблицы выдающихся математиков;
- комплект классных чертежных инструментов: линейка, транспортир, угольник (45°,45°), циркуль;
- комплекты демонстрационных планиметрических фигур и стереометрических тел.
Критерии оценивания
Оценка устных ответов учащихся.
Ответ оценивается отметкой «5», если ученик:
- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
- изложил материал грамотным языком в определенной логической последовательности, точно используя математическую терминологию и символику;
- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;
- продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость использованных при ответе умений и навыков;
- отвечал самостоятельно без наводящих вопросов учителя.
Возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
Ответ оценивается отметкой «4», если он удовлетворен в основном требованиям на отметку «5», но при этом имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившие математического содержания ответа, исправленные по замечанию учителя.
- допущены ошибки или более двух недочетов при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил по замечанию учителя.
Отметка «3» ставится в следующих случаях:
- неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала (определенные «Требованиями к математической подготовке учащихся»).
- имелись затруднения или допущены ошибки в определении понятий и, использовании математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- при знании теоретического материала выявлена недостаточная сформированность умений и навыков.
Отметка «2» ставится в следующих случаях:
- не раскрыто основное содержание учебного материала;
- обнаружено незнание или непонимание учеником большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Оценка письменных контрольных работ учащихся.
Отметка «5» ставится в следующих случаях:
- работа выполнена полностью.
- в логических рассуждениях и обоснованиях нет пробелов и ошибок;
- в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала);
Отметка «4» ставится, если:
- работа выполнена полностью, но обоснования шагов решения недостаточны (если умения обосновывать рассуждения не являлись специальным объектом проверки);
- допущена одна ошибка или два-три недочета в выкладках, чертежах или графиках (если эти виды работы не являлись специальным объектом проверки);
Отметка «3» ставится, если:
- допущены более одной ошибки или более двух- трех недочетов в выкладках, чертежах или графика, но учащийся владеет обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
- допущены существенные ошибки, показавшие, что учащийся не владеет обязательными знаниями по данной теме в полной мере.
Отметка «1» ставится, если:
- работа показала полное отсутствие у учащегося обязательных знаний, умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Предварительный просмотр:
Календарно-тематическое планирование по математике 6 класса
По теме: методические разработки, презентации и конспекты
Рабочая программа по математике в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по математики 5-9 классы. Математика 5 класс: И.И.Зубарева, А.
Рабочая программа разработана на один учебный год: в основу программы положены педагогические и дидактические принципы (личностно ориентированные; культурно ориентированные; деятельно...
Рабочая программа по математике класс (автор Виленкин Н.Я.))
Рабочая проргамма содержит пояснительную записку, календарно-тематическое планирование, требования к подготовке учащихся...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
РАБОЧАЯ ПРОГРАММА по математике для 5-х классов Разработана на основе примерной рабочей программы ( автор – составитель О.С. Кузнецова ) учителем математики ГБОУ школы № 645 Старковской С.Н
Настоящая рабочая программа разработана в соответствии с основными положениями федерального государственного образовательного стандарта основного общего образования по математике....
Рабочая программа по Математике 5 класса (Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под ред. В.В.Воронковой и учебника «Математика» М.Н. Перова, Г.М. Капустина)
Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под редакцией доктора педагогических наук В.В.Воронковой Сб.1. –М.:...
РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М.
РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М...