Рабочая программа по алгебре 9 класс
рабочая программа по алгебре (9 класс) по теме
Рабочая программа по алгебре 9 класс к учебнику Ш.А. Алимова
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma_po_algebre_9_klass.rar | 58.58 КБ |
Предварительный просмотр:
Пояснительная записка
Нормативно-правовые документы.
Рабочая программа по алгебре разработана на основе государственных образовательных стандартов по математике 1998г., Обязательного минимума содержания математического образования, Программы для общеобразовательных школ, гимназий, лицеев. Математика 5-11. Составитель Г.М.Кузнецов, Н.Г. Миндюк, М.: Дрофа,2004., методических рекомендаций к разработке календарно-тематического планирования по УМК Алимова Ш.А. Алгебра. 9 класс. - М.: Просвещение, 2012.
Общая характеристика учебного предмета
Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.
Курс алгебры построен в соответствии с традиционными содержательно-методическими линиями: числовой, функциональной, алгоритмической, уравнений и неравенств, алгебраических преобразований. На этапе 9-го класса завершается изучение рациональных уравнений с одной переменной. Дается понятие целого рационального уравнения и его степени. Особое внимание уделяется решению уравнений третьей и четвертой степени с помощью разложения на множители и введения вспомогательной переменной, что широко используется в дальнейшем при решении тригонометрических, логарифмических и других видов уравнений. Рассматриваются системы, содержащие уравнения второй степени с двумя неизвестными. Даются первые знания об арифметической и геометрической прогрессиях, как о частных видах последовательностей. Изучая формулу нахождения суммы первых членов арифметической прогрессии и формулу суммы первых членов геометрической прогрессии , целесообразно уделить внимание заданиям, связанным с непосредственным применением этих формул. Из курса геометрии продолжается изучение синуса, косинуса и тангенса острого угла прямоугольного треугольника. Вводится понятие котангенса угла. Изучаются свойства синуса, косинуса, тангенса и котангенса, которые находят применение в преобразованиях тригонометрических выражений. Специальное внимание уделяется переходу от радианной меры угла к градусной мере и наоборот. Центральное место занимают формулы, выражающие соотношения между тригонометрическими функциями одного и того же аргумента. Изучаются свойства функций , при и . Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.
Цели и задачи обучения
- обучить делению многочленов, решению алгебраических уравнений и систем уравнений.
- сформировать понятие степени с целым показателем; выработать умение выполнять преобразования простейших выражений, содержащих степень с целям показателем; ввести понятие корня n-ой степени и степени с рациональным показателем.
- выработать умение исследовать по заданному графику функции , , , , , .
- ввести понятия синуса, косинуса, тангенса и котангенса произвольного угла; сформировать умение вычислять по известному значению одной из тригонометрических функций значения остальных тригонометрических функций, выполнять несложные преобразования тригонометрических выражений.
- познакомить учащихся с понятиями арифметической и геометрической прогрессий.
- познакомить учащихся с различными видами событий, с понятием вероятности события и с различными подходами к определению этого понятия; сформировать умения нахождения вероятности события, когда число равновозможных исходов испытания очевидно; обучить нахождению вероятности события после проведения серии однотипных испытаний.
- сформировать представления о закономерностях в массовых случайных явлениях; выработать умение сбора и наглядного представления статистических данных; обучить нахождению центральных тенденций выборки.
Место предмета в учебном плане
Рабочая программа разработана на 136 часов из расчета 4 часа в неделю: 4ч × 34 недели = 136ч.
Общеучебные умения, навыки и способы деятельности
Изучение алгебры в основной школе дает возможность обучающимся достичь следующих результатов развития:
в личностном направлении:
1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
4) креативность мышления, инициатива, находчивость, активность при решении математических задач;
5) умение контролировать процесс и результат учебной математической деятельности;
6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
в метапредметном направлении:
1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
Содержание учебного курса
Повторение курса алгебры 8 класса.
Алгебраические уравнения. Системы нелинейных уравнений.
Деления многочленов. Решение алгебраических уравнений. Уравнения, сводящиеся к алгебраическим. Системы нелинейных уравнений с двумя неизвестными. Различные способы решения систем уравнений. Решение задач с помощью систем уравнений.
Степень с рациональным показателем.
Степень с целым показателем и её свойства. Возведение числового неравенства в степень с натуральным показателем. Корень n-й степени, степень с рациональным показателем.
Степенная функция.
Область определения функции. Возрастание и убывание функции. Чётность и нечётность функции.
Прогрессии.
Числовая последовательность. Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы n первых членов арифметической и геометрической прогрессии.
Случайные события.
События невозможные, достоверные, случайные. Совместные и несовместные события. Равновозможные события. Классическое определение вероятности события. Представление о геометрической вероятности. Решение вероятностных задач с помощью комбинаторики. Противоположные события и их вероятности. Относительная частота и закон больших чисел. Тактика игр, справедливые и несправедливые игры.
Случайные величины.
Таблицы распределения значений случайной величины. Наглядное представление распределения случайной величины: полигон частот, диаграммы круговые, линейные, столбчатые, гистограмма. Генеральная совокупность и выборка. Репрезентативная выборка. Характеристики выборки: размах, мода, медиана, среднее. Представление о законе нормального распределения.
Повторение. Решение задач по курсу алгебры 7-9 классов.
Учебно-тематический план
№ | Наименование разделов и тем | Всего часов | Контрольных работ |
1 | Повторение курса 8 класса | 5 | 1 |
2 | Алгебраические уравнения. Системы нелинейных уравнений. | 20 | 1 |
3 | Степень с рациональным показателем | 12 | 1 |
4 | Степенная функция | 17 | 1 |
5 | Прогрессии | 13 | 1 |
6 | Случайные события | 7 | 1 |
7 | Случайные величины | 6 | 1 |
8 | Множества. Логика | 7 | 1 |
9 | Итоговое повторение | 15 | 1 |
Всего за год | 102 | 9 |
Требования к уровню подготовки учащихся
В результате изучения математики ученик должен
знать/понимать
- существо понятия математического доказательства; примеры доказательств;
существо понятия алгоритма; примеры алгоритмов; - как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
уметь
- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
- выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители;
- выполнять тождественные преобразования рациональных выражений;
применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
решать линейные и квадратные неравенства с одной переменной и их системы; - решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
изображать числа точками на координатной прямой; - определять координаты точки плоскости, строить точки с заданными координатами
- изображать множество решений линейного неравенства;
- распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
- находить значения функции, заданной формулой, таблицей, графиком по ее аргументу
- находить значение аргумента по значению функции, заданной графиком или таблицей;
- определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
- описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры; описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций; интерпретации графиков реальных зависимостей между величинами;
решать следующие жизненно-практические задачи:
- самостоятельно приобретать и применять знания в различных ситуациях;
- работать в группах;
- аргументировать и отстаивать свою точку зрения;
- уметь слушать других; извлекать учебную информацию на основе сопоставительного анализа объектов;
- пользоваться предметным указателем энциклопедий и справочников для нахождения информации.
Перечень учебно-методического обеспечения
Список литературы
для учителя:
- Алимов Ш.А. Алгебра. Учебник для 9 класса общеобразовательных учреждений.М., «Просвещение», 2012.
- Дорофеев Г. В. и др. Оценка качества подготовки выпускников основной школы по математике. М., «Дрофа», 2001.
- Нечаев Н. П. Разноуровневый контроль качества знаний по математике: Практические материалы: 5-11 классы.- 2-е изд.- М.: «5 за знания», 2007
- Программы общеобразовательных учреждений. Алгебра. 7-9 классы. Составитель: Бурмистрова Татьяна Антоновна, «Просвещение» Москва 2008
- Разноуровневые дидактические материалы по алгебре. 8 класс. / Н.Г. Миндюк, М.Б. Миндюк. / М.: Генжер, 1999. – 95 с.
- Уроки алгебры в 9 классе. / В.И. Жохов, Л.Б. Крайнева. Пособие для учителей. / М.: Вербум – М, 2000.
для учащихся:
- Алимов Ш.А. Алгебра. Учебник для 9 класса общеобразовательных учреждений. М., «Просвещение», 2012
По теме: методические разработки, презентации и конспекты
Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.
Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...
Рабочие программы по алгебре 8 класс,автор Ю.Н.Макарычев под редакцией Теляковского и по алгебре и началам математического анализа 11 класс, под редакцией А.Н.Колмогорова
Рабочая программа по алгебре 8 класс, автор Ю.Н.Макарычев под редакцией С.А.Теляковского на 2012-2013 уч.годРабочая программа по алгебре и началам анализа 11 класс под редакцией А.Н.Колмогорова на 201...
Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др
Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...
РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ Класс: 8 (базовый уровень)
Тематический план по алгебре разработан в соответствии с Примерной программой основного общего образования по математике, с учетом требований федерального компонента государственного...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
Рабочая программа по алгебре для 10-11 классов, разработанная в соответствии с ФКГОС-2004 . Авторская программа для общеобразовательных учреждений Краснодарского края: Алгебра и начала анализа. 10 – 11 классы (автор-составитель Е.А. Семенко).
РАБОЧАЯ ПРОГРАММА по алгебре и началам анализа. Уровень образования (класс): среднее общее образование (10- 11 классы). Количество часов - 204. Учитель...
РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс 9 Учитель Асессорова Е.М.
РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс...