Рабочая программа по математике 9 класс.
рабочая программа по алгебре (9 класс) по теме

Кабаргина Людмила Николаевна

Рабочая программа по математике 9 класс.

Скачать:

ВложениеРазмер
Microsoft Office document icon rabochaya_programma_po_matematike_9_klass.doc102.5 КБ

Предварительный просмотр:

МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ЖЕРДЕВСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №1

Рассмотрена и рекомендована

к утверждению                                                                Утверждена приказом

Методическим советом школы                                     МОУ Жердевской СОШ №1

«__» _______________ 20   г.                                        №___ от «_»_____20  год.

Протокол №______

 

Рабочая программа учебного предмета «Математика»

для 9-х классов

на 2011-2012 учебный год.

Пояснительная записка

Цели обучения

Курс математики направлен на достижение следующих целей, обеспечивающих реализацию личностно-ориентированного, когнитивно-коммуникативного, деятельностного подходов к обучению математике:

  •  овладение системой математических званий и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • совершенствование вычислительной деятельности, коммуникативных умений  и  навыков,   обеспечивающих  свободное  владение  математическим языком в разных сферах и ситуациях его использования,
  •  интеллектуальное развитие, формирование  качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической  культуры, пространственных представлений, способности к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  •  воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Задачи обучения:

  • вооружить учащихся знаниями базовой науки;
  • организовать деятельность обучающихся в данной сфере познания;
  • формировать       у       учащихся       научное мировоззрение;
  •  развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
  •  овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
  •  изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
  •  развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
  •  получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
  •  развить логическое мышление и речь — умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
  • сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

               обучать школьников умению связно излагать свои мысли в устной и письменной форме.       

        Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важнёй задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.

        Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности — умений воспринимать и анализировать информацию, представленную в- различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.
    При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы  вероятностного мышления.

Рабочая  программа по математике для 9-го класса создана на основе федерального компонента государственного стандарта основного общего образования, принятого в 2004 году, «Примерной программы основного общего образования математике для образовательных учреждений с русским языком обучения», разработанной Министерством образования и науки Российской Федерации в 2004 году, а также программы по математике  А.Г.Мордковича.

Выбор примерной программы для разработки рабочей программы обусловлен тем, что примерная программа не отдает предпочтения какой-либо одной концепции преподавания математики в ущерб другим, позволяет использовать учебники, в которых нашли отражение различные теории и практические методики. Примерная программа позволяет определить основные принципы организации учебного материала, его структурирование, последовательность изучения и распределение по классам.

Программа А.Г.Мордковича выбрана для составления рабочей программы, так как основная её особенность – ориентация на всестороннее развитие основных видов математической деятельности: навыков чтения-понимания-рассуждения, счета, математического моделирования.

В рабочей программе изменено количество учебных часов, отводимых на изучение крупных разделов курса, в соответствии с учебным планом школы.

Место и роль учебного курса математика в овладении обучающимися требований к уровню подготовки обучающихся в соответствии с федеральными государственными образовательными стандартами. В системе школьного образования учебный предмет «Математика» занимает особое место: является не только объектом изучения, но и средством обучения. Содержание обучения математике отобрано и структурировано на основе компетентностного подхода. В соответствии с этим формируются и развиваются коммуникативная, языковая, исследовательская компетенции.

Математика для основной школы призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами. Содержание обучения ориентировано на развитие личности ученика, воспитание культурного человека, владеющего нормами математического языка, способного свободно выражать свои мысли в устной и письменной форме. Происходит формирование таких жизненно важных умений, как устный счет, переработка информации, поиск информации в различных источниках, а также способность применять ее на практике.

Учебный план МОУ Жердевской СОШ №1 предусматривает изучение математики в 6 классе в объёме 204 часов (136 часов на алгебру и 68 часов на геометрию), в том числе18 по алгебре и 4 часа по геометрии   – для проведения контрольных работ и 4-х тестов.

Основная форма организации образовательного процесса – классно-урочная.

Технологии обучения: уровневая дифференциация, информационно-коммуникационные, ТРИЗ, проектная.

Формирование ключевых компетенций достигается путём использования следующих механизмов: групповая работа; исследовательская, поисковая и проектная деятельность; задания, требующие самооценки.

Виды и формы контроля: математический диктант, контрольная работа, срез по методике Симонова, тест, устный зачёт.

Планируемый уровень подготовки учащихся на конец учебного года. В процессе изучения математики совершенствуются и развиваются следующие общеучебные умения:  коммуникативные (ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства), интеллектуальные (сравнение и сопоставление, соотнесение, синтез, обобщение, абстрагирование, оценивание и классификация, проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования),  информационные (поиска, систематизации, анализа  и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии ), организационные (умение формулировать цель деятельности, планировать ее, осуществлять самоконтроль, самооценку, самокоррекцию); исследовательские (поиск  идей, проведение экспериментов, обобщение, постановка и формулирование новых задач).

Используемый учебник: А.Г.Мордкович «Алгебра» ч I, ч II, 9 класс, Мнемозина, 2008г.  и Л.С.Атанасян «Геометрия 7-9», М. Пр-е,  2008 г.

 

СОДЕРЖАНИЕ  рабочей программы

                                      Алгебра 9

       1 Рациональные неравенства и их системы  

   Линейное и квадратное неравенство с одной переменной, частное и общее решение, равносильность, равносильные преобразования. Рациональные неравенства с одной переменной, метод интервалов, кривая знаков, нестрогие и строгие неравенства. Элемент множества, подмножество данного множества, пустое множество. Пересечение и объединение множеств. Системы линейных неравенств, частное и общее решение системы неравенств.

Требования к уровню подготовки: учащиеся должны знать изученные правила,   осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные, формирование представлений о частном и общем решении рациональных неравенств и их систем, о неравенствах с модулями, о равносильности неравенств; овладение умением совершать равносильные преобразования, решать неравенства методом интервалов; расширение и обобщение сведений о рациональных неравенствах и способах их решения: метод интервалов, метод замены переменной.

Контрольные мероприятия: самостоятельная работа, контрольная работа,  математический диктант.

   2.  системы уравнений

      Рациональное уравнение с двумя переменными, решение уравнения с двумя переменными, равносильные уравнения, равносильные преобразования. График уравнения, система уравнений с двумя переменными, решение системы уравнений с двумя переменными. Метод подстановки, метод алгебраического сложения, метод введения новых переменных, графический метод, равносильные системы уравнений.

Требования к уровню подготовки: учащиеся должны знать изученные правила, уметь переходить от одной формы записи чисел к другой. Основная цель: формирование представлений о системе двух рациональных уравнений с двумя переменными, о рациональном  уравнении с двумя переменными; овладение умением совершать равносильные преобразования, решать уравнения и системы уравнений с двумя переменными; отработка навыков решения уравнения и системы уравнений различными методами: графическим, подстановкой, алгебраического сложения, введения новых переменных.

Контрольные мероприятия: самостоятельная работа, контрольная работа, тест, математический диктант.
      3.  Числовые функции

     Функция, область определение и множество значений функции. Аналитический, графический, табличный, словесный способы задания функции. График функции. Монотонность (возрастание и убывание) функции, ограниченность функции снизу и сверху, наименьшее и наибольшее значения функции,  непрерывная функция, выпуклая вверх или вниз. Элементарные функции. Четная и нечетная функции и их графики. Степенные функции с натуральным показателем, их свойства и графики. Свойства и графики степенных функций с четным и нечетным показателями, с отрицательным целым показателем.

Требования к уровню подготовки: учащиеся должны знать изученные правила. Основная цель: формирование представлений о таких фундаментальных понятиях математики, какими являются понятия функции, её области определения, области значения; о различных способах задания функции: аналитическом, графическом, табличном, словесном; овладение умением применения четности или нечетности, ограниченности, непрерывности, монотонности функций; формирование умений находить наибольшее и наименьшее значение на заданном промежутке, решая практические задачи; формирование понимания того, как свойства функций отражаются на поведении графиков функций.

Контрольные мероприятия: самостоятельная работа, контрольная работа, тест, математический диктант.
     
4.  Прогрессии

    Числовая последовательность. Способы задания числовой последовательности. Свойства числовых последовательностей, монотонная последовательность, возрастающая последовательность, убывающая последовательность. Арифметическая прогрессия, разность, возрастающая прогрессия, конечная прогрессия, формула n-го члена арифметической прогрессии, формула суммы членов конечной арифметической прогрессии,  характеристическое свойство арифметической прогрессии. Геометрическая прогрессия, знаменатель прогрессии, возрастающая прогрессия, конечная прогрессия,  формула n-го члена геометрической прогрессии, формула суммы членов конечной геометрической прогрессии, характеристическое свойство геометрической прогрессии.

 Требования к уровню подготовки: учащиеся должны знать изученные правила. Основная цель: формирование преставлений о понятии числовой последовательности, арифметической и геометрической прогрессиях как частных случаях числовых последовательностей; о трех способах задания последовательности: аналитическом, словесном и рекуррентном;  сформировать и обосновать ряд свойств арифметической и геометрической прогрессий, свести их в одну таблицу; овладение умением решать текстовые задачи, используя свойства арифметической и геометрической прогрессии.

Контрольные мероприятия: самостоятельная работа, контрольная работа, тест, математический диктант.


     
5.  элементы комбинаторики, статистики и теории вероятностей

      Методы решения простейших комбинаторных задач (перебор вариантов, построение дерева вариантов, правило умножения). Факториал. Общий ряд данных и ряд данных конкретного измерения, варианта ряда данных, её кратность, частота и процентная частота, сгруппированный ряд данных, многоугольники распределения. Объем, размах, мода, среднее значение. Случайные события: достоверное и невозможное события, несовместные события, событие, противоположное данному событию, сумма двух случайных событий. Классическая вероятностная схема. Классическое определение вероятности.

Требования к уровню подготовки: учащиеся должны знать изученные правила. Основная цель: формирование преставлений о  всевозможных комбинациях, о методах статистической обработки результатов измерений, полученных при проведении эксперимента, о числовых характеристиках информации; овладеть умением решения простейших комбинаторных и вероятностных задач.

Контрольные мероприятия: самостоятельная работа, контрольная работа, тест, математический диктант.
     
6.  повторение

Основная цель: обобщение и систематизация знаний по основным темам курса алгебры за 9 класс; формирование понимания возможности использования приобретенных знаний и умений в практической деятельности и повседневной жизни.

 Контрольные мероприятия: самостоятельная работа, контрольная работа, математический диктант.

  

                             Геометрия.

1.Вводное повторение  

2.Векторы. Метод координат.

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Требования к уровню подготовки: учащиеся должны знать изученные правила, уметь пользоваться геометрическим языком для описания предметов окружающего мира; распознавать геометрические фигуры, различать их взаимное расположение, изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур; распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их.
Цель: научить обучающихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.

Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число):

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

Контрольные мероприятия: самостоятельная работа, контрольная работа, математический диктант.

3.Соотношения между сторонами и углами треугольника. Скалярное произведение векторов.

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Требования к уровню подготовки: учащиеся должны знать изученные определения и теоремы, уметь проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования.
Цель: развить умение обучающихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольники (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение для векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.

Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.

Контрольные мероприятия: самостоятельная работа, контрольная работа, математический диктант

4. Длина окружности и площадь круга.

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Требования к уровню подготовки: учащиеся должны знать изученные определения и теоремы, уметь проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования. Цель: расширить знание обучающихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.

        В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2*n-угольника, если дан правильный n-угольник.

        Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.

Контрольные мероприятия: самостоятельная работа, контрольная работа, математический диктант

5.Движения.

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.

Требования к уровню подготовки: учащиеся должны знать изученные определения и теоремы, уметь проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования. Цель: познакомить обучающихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движении основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач.

Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.

Контрольные мероприятия: самостоятельная работа, контрольная работа, математический диктант

6. Об аксиомах геометрии.

Беседа об аксиомах геометрии.

Требования к уровню подготовки: учащиеся должны знать изученные определения и теоремы, уметь проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования. Цель: дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.

В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.

7. Повторение. Решение задач.

        Требования к уровню подготовки: учащиеся должны знать изученные определения и теоремы, уметь проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования. Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс геометрии 9 класса.

Контрольные мероприятия: самостоятельная работа, контрольная работа, математический диктант

 

 

       

 

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

ТЕМА

Количество

часов на

изучение

Количество

контрольных

работ

1.

Рациональные неравенства и их системы.

18

1

2.

Системы уравнений.

17

1

3.

Числовые функции.

28

2

4.

Прогрессии.

20

1

6.

Элементы комбинаторики, статистики и теории вероятностей.

13

1

7.

Повторение.

30

2

Резерв

10

Итого:

136

8

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

ТЕМА

Количество

часов на

изучение

Количество

контрольных

работ

1.

Повторение  

2

2.

Векторы.

9

3.

Метод координат.

11

1

4.

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов.

15

1

5.

Длина окружности и площадь круга.

12

1

6.

Движения.

9

1

7.

Об аксиомах геометрии.

2

8.

Повторение. Решение задач.

8

Итого:

68

4


 

Требования к уровню подготовки обучающихся 9 класса

В результате изучения курса алгебры 9-го класса учащиеся должны уметь:

  • решать линейные и квадратные неравенства с одной переменной, дробно-рациональные неравенства, неравенства, содержащие модуль;
  • понимать  простейшие понятия  теории множеств, задавать множества, производить операции над множествами;
  • решать системы линейных  и квадратных неравенств, системы рациональных неравенств, двойные неравенства;
  • решать системы уравнений, простые нелинейные системы уравнений двух переменных различными методами;
  • применять графический метод, метод подстановки, метод алгебраического сложения и метод введения новой  переменной при решении практических задач;
  • составлять математические модели реальных ситуаций  и работать с составленной моделью;
  • исследовать  функцию на монотонность, определять наибольшее и наименьшее значение функции, ограниченность, выпуклость, четность, нечетность, область определения и множество значений;
  • понимать содержательный смысл важнейших свойств функции; по графику функции отвечать на вопросы, касающиеся её свойств;
  • описывать свойства изученных функций, строить их графики;
  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  • решать простейшие комбинаторные и вероятностные задачи.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследования построенных моделей с использованием аппарата алгебры;
  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
  • интерпретации графиков реальных зависимостей между величинами.


В ходе преподавания геометрии в 9 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

        планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

        решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

        исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

        ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

        проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

        поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В результате изучения курса геометрии 9 класса обучающиеся должны:

знать/понимать        

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;
  • распознавать геометрические фигуры, различать их взаимное расположение;
  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
  • в простейших случаях строить сечения и развертки пространственных тел;
  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
  • вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;
  • расчетов, включающих простейшие тригонометрические формулы;
  • решения геометрических задач с использованием тригонометрии
  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

 Элементы логики, комбинаторики,
статистики и теории вероятностей

       Уметь:
      • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений , оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
      • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
      • решать комбинаторные задачи путем систематического перебора возможных вариантов и с использованием правила умножения;
      • вычислять средние значения результатов измерений;
      • находить частоту события, используя собственные наблюдения и готовые статистические данные;
      использовать приобретенные знания а умения в практической деятельности а повседневной жизни:
      • для выстраивания аргументации при доказательстве и в диалоге;
      • записи математических утверждений, доказательств;
      • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
      • решения учебных и практических задач, требующих систематического перебора вариантов;
     • понимания статистических утверждений.

ЛИТЕРАТУРА И СРЕДСТВА ОБУЧЕНИЯ

  1. А.Г.Мордкович, П.В. Семенов. Алгебра – 9. Часть 1. Учебник.  М.: Мнемозина, 2008.
  2. А.Г.Мордкович, Е.Е.Тульчинская, Т.Н.Мишустина, П.В. Семенов. Алгебра – 9. Часть 2. Задачник. М.: Мнемозина, 2008.
  3. 3. Л.А. Александрова. Алгебра - 9. Контрольные работы / Под   ред.  А.Г.Мордковича. М.: Мнемозина, 2008.
  4. 4. Л.А. Александрова. Алгебра - 9. Самостоятельные работы / Под   ред.  А.Г.Мордковича. М.: Мнемозина, 2008.
  5. Образовательный стандарт основного общего образования по  математике.
  6. Примерная программа основного общего образования по математике.
  7. Концепция математического образования. Математика в школе, 2000год, № 2, с. 13-18.
  8. Мордкович А.Г. Алгебра 7-9 кл.: Методическое пособие для учителя.- М.:Мнемозина,2004.
  9. Лысенко Ф.Ф.. Алгебра 9 класс. Подготовка к итоговой аттестации
  10. Артюнян Е. Б., Волович М. Б., Глазков Ю. А., Левитас Г. Г. Математические диктанты для 5-9 классов. – М.: Просвещение, 1991.
  11. Звавич А. И., Шляпочкин Л. Я. Контрольные и проверочные по алгебре 7-9 классы. М.: Просвещение, 2008.
  12. Колягин Ю. М., Сидоров Ю. В. Изучение алгебры в 7-9 классах. – М.: Просвещение, 2002.

  1. Федеральный компонент государственных образовательных стандартов  основного общего  образования (приказ Минобрнауки от 05.03.2004г. № 1089).
  2. Временные требования к минимуму содержания основного общего образования (утверждены приказом МО РФ от 19.05.98 № 1236).
  3. Примерная программа по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г № 03-1263)
  4. Примерная программа общеобразовательных учреждений по геометрии 7–9 классы,  к учебному комплексу для 7-9 классов (авторы Л. С. Атанасян,   В. Ф. Бутузов, С. В. Кадомцев и др., составитель Т.А. Бурмистрова – М: «Просвещение», 2008 – М: «Просвещение», 2008. – с. 19-21).
  5. Геометрия:   учеб,   для   7—9 кл. / [Л. С. Атанасян,   В. Ф. Бутузов, С. В. Кадомцев и др.]. — М.: Просвещение, 2004 - 2008.
  6. Оценка качества подготовки выпускников основной школы по математике/ Г.В.Дорофеев и др.– М.: Дрофа, 2000.
  7. Изучение геометрии в 7, 8, 9 классах: метод, рекомендации: кн. для учителя / [Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков и др.]. -М.: Просвещение, 2003 — 2008.
  8. Гусев В. А. Геометрия: дидакт. материалы для 9 кл. / В. А. Гусев, А. И. Медяник. — М.: Просвещение, 2003—2008.
  9. Зив Б. Г. .Геометрия:   дидакт.   материалы  для   9 кл. / Б. Г. Зив, В. М. Мейлер. — М.: Просвещение, 2004—2008.

Дополнительная литература:

  1. Математика 5-11 классы: нетрадиционные формы организации контроля на уроках / авт.-сост. М.Е. Козина, О.М. Фадеева. - Волгоград, Учитель, 2007;
  2. Конструирование современного урока математики: кн. для учителя / С.Г. Манвелов. – М.: Просвещение, 2005.
  3. Гаврилова Н.Ф. Поурочные разработки по геометрии: 9 класс. – М.: ВАКО, 2005.

Resource id #4330

По теме: методические разработки, презентации и конспекты

Рабочая программа по математике в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по математики 5-9 классы. Математика 5 класс: И.И.Зубарева, А.

Рабочая программа разработана  на один учебный год:   в основу программы положены педагогические и дидактические принципы (личностно ориентированные; культурно ориентированные; деятельно...

Рабочая программа по математике класс (автор Виленкин Н.Я.))

Рабочая проргамма содержит пояснительную записку, календарно-тематическое планирование, требования  к подготовке учащихся...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

РАБОЧАЯ ПРОГРАММА по математике для 5-х классов Разработана на основе примерной рабочей программы ( автор – составитель О.С. Кузнецова ) учителем математики ГБОУ школы № 645 Старковской С.Н

Настоящая рабочая программа разработана в соответствии с основными положениями федерального государственного образовательного стандарта основного общего образования по математике....

Рабочая программа по Математике 5 класса (Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под ред. В.В.Воронковой и учебника «Математика» М.Н. Перова, Г.М. Капустина)

Рабочая программа  составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида,  под редакцией доктора педагогических наук В.В.Воронковой Сб.1. –М.:...

РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    математика      Класс         5 Учитель      Асессорова Е.М...