Рабочая программа для 9 класса по алгебре
рабочая программа по алгебре (9 класс) на тему

Худякова Оксана Геннадьевна

Рабочая программа для 9 класса по алгебре к УМК Ю.Н.Макарычева, 3 ч/нед.

Скачать:

ВложениеРазмер
Microsoft Office document icon alg-9.doc97 КБ

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

«Междуреченская СОШ №6»

Согласовано на МС школы.

Протокол №

от «__»_______2013г.

Руководитель МО

___________________

Утверждаю

Директор МБОУ «Междуреченская  СОШ №6»

Приказ №

от «__»_______2013г.

РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА

ПО АЛГЕБРЕ

9  КЛАСС

        

                                                                                               Составил:

                                                                                              учитель физики,

математики

                                                                                               Худякова Оксана Геннадьевна

        п. Междуреченский

                                                               2013 г.

Пояснительная записка

           Рабочая программа по алгебре для 9 класса составлена на основе:

  1. Федерального компонента государственного стандарта  основного общего  образования (приказ МОиН  РФ№1089 от 05.03.2004г.),
  2.  Примерных программ по математике (письмо Департамента государственной политики в образовании МОиН РФ от 07.07.2005 г. №03– 1263),
  3. Письмо МО России от 23.09.2003г №03-93 ин/13-03 «О введении элементов комбинаторики, статистики и теории вероятностей в содержание математического образования основной школы»,
  4. “Временных требований к минимуму содержания основного общего образования”(приказ МО РФ от 19.05.98 №1236),
  5. Программы ”Алгебра 7-9 кл.”, Ю.Н.Макарычев и др.- М.: Дрофа, 2004г.,
  6. Учебного плана плана МБОУ “Междуреченская  СОШ №6” на 2013-2014 учебный год.

Цели изучения: 

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
  • развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса учащиеся овладевают приёмами вычислений на калькуляторе.

Задачи курса:

-ввести понятия квадратного трехчлена, корня квадратного трехчлена, изучить формулу разложения квадратного трехчлена на множители;

- расширить сведения о свойствах функций, познакомить со свойствами и графиком квадратичной функции и степенной функции;

- систематизировать и обобщить сведения о решении целых и дробных рациональных уравнений с одной переменной ;

- научить решать квадратичные неравенства;

- завершается изучение систем уравнений с двумя переменными;

- вводится понятие неравенства с двумя переменными и системы неравенств с двумя переменными;

- вводится понятие последовательности, изучается арифметическая и геометрическая прогрессии;

- ввести элементы комбинаторики и теории вероятностей.

   

Общая характеристика учебного предмета:

        Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

        Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

        Алгебра

Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

        Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

        Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

        При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность:

развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

В курсе алгебры 9 класса вырабатывается умение раскладывать квадратный трехчлен на множители; умение строить график функции у = ах2 + bх + с, умение указывать координаты вершины параболы, оси симметрии, направление ветвей; умение находить по графику промежутки возрастания и убывания функции, промежутки, в которых функция сохраняет знак; умение решать неравенства вида ах2 + bх + с>0 или  ах2 + bх + с<0, где а0; умение решать целые и дробно рациональные уравнения с одной переменной; умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; вырабатывается умение использовать индексное обозначение, которое используется при изучении арифметической и геометрической прогрессии; умение использовать комбинаторное правила умножения, которое используется при выводе формул для подсчета числа перестановок, размещений и сочетаний, умение определять, о каком виде комбинаций идет речь в задаче.    

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение алгебры в 9 классе отводится 3часа в неделю, всего 102 часа, в том числе на контрольные работы 8 часов. Изменений в программу не внесено. Срок реализации программы 3 учебных года.

Требования к уровню подготовки обучающихся

В результате изучения алгебры учащиеся должны

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
  • решать линейные и квадратные неравенства с одной переменной и их системы;
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  • изображать числа точками на координатной прямой;
  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
  • описывать свойства изученных функций (у=кх, где к0, у=кх+b, у=х2, у=х3, у =, у=), строить их графики;
  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследовании построенных моделей с использованием аппарата алгебры;
  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
  • интерпретации графиков реальных зависимостей между величинами.

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
  • решать комбинаторные задачи путем систематического перебора возможных вариантов, вычислять средние значения результатов измерений;
  • находить частоту события, используя собственные наблюдения и готовые статистические данные;
  • использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
  • выстраивания аргументации при доказательстве (в форме монолога и диалога);
  • распознавания логически некорректных рассуждений;
  • записи математических утверждений, доказательств;
  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
  • решения учебных и практических задач, требующих систематического перебора вариантов;
  • понимания статистических утверждений.

-межпредметные  связи, раскрытые в ходе изучения курса: физика, химия, геометрия.

Учебно-тематический план

Наименование разделов и тем

Кол-во часов

Уроки

Контрольные работы

1

Квадратичная функция.

24

22

2

2

Уравнения и неравенства с одной переменной

13

12

1

3

Уравнения и неравенства с двумя переменными

18

17

1

4

Арифметическая и геометрическая прогрессии

15

13

2

5

Элементы комбинаторики и теории вероятностей

13

12

1

6

Повторение

19

18

1

Итого

102

94

8

Тематическое планирование

1. Квадратичная функция

Функция. Возрастание и убывание функции. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Решение задач путем выделения квадрата двучлена из квадратного трехчлена. Функция y=ax2+bx+с, её свойства, график. Простейшие преобразования графиков функций. Решение неравенств второй степени с одной переменной. Решение рациональных неравенств методом интервалов. Четная и нечетная функции. Функция y=xn, Определение корня n-й степени.  

        

В результате изучения учащиеся должны

Знать основные свойства функций, уметь находить промежутки знакопостоянства, возрастания, убывания функций; определение и свойства четной и нечетной функций; что степень с основанием, равным 0 определяется только для положительного дробного показателя и знать, что степени с дробным показателем не зависят от способа записи r в виде дроби; свойства степеней с рациональным показателем, уметь выполнять простейшие преобразования выражений, содержащих степени с дробным показателем; определение корня n- й степени, при каких значениях а имеет смысл выражение  .

Уметь находить область определения и область значений функции, читать график функции; решать квадратные уравнения, определять знаки корней; выполнять разложение квадратного трехчлена на множители; строить график функции у=ах2 , выполнять простейшие преобразования графиков функций; строить график квадратичной функции, выполнять простейшие преобразования графиков функций; строить график квадратичной функции» находить по графику нули функции, промежутки, где функция принимает положительные и отрицательные значения; построить график функции y=ax2  и применять её свойства; построить график функции y=ax2  + bx + с и применять её свойства; находить токи пересечения графика Квадратичной функции с осями координат; разложить квадратный трёхчлен на множители; решать квадратное уравнение; решать квадратное неравенство алгебраическим способом; решать квадратное неравенство с помощью графика квадратичной функции; решать квадратное неравенство методом интервалов; находить множество значений квадратичной функции; решать неравенство ах2 +вх+с≥0 на основе свойств квадратичной функции; строить график функции у=хn  , знать свойства степенной функции с натуральным показателем, уметь решать уравнения хn=а при: а) четных и б)нечетных значениях n.

Уметь выполнять простейшие преобразования и вычисления выражений, содержащих корни, применяя изученные свойства арифметического корня n-й степени.

2. Уравнения и неравенства с одной переменной

Целое уравнение и его корни. Решение уравнений третьей и четвертой степени с одним неизвестным с помощью разложения на множители и введения вспомогательной переменной.

В результате изучения учащиеся должны

Знать методы решения уравнений:

а) разложение на множители;

б) введение новой переменной;

в)графический способ.

Уметь решать целые уравнения методом введения новой переменной

3. Уравнения и неравенства с двумя переменными

Целое уравнение и его корни. Решение уравнений третьей и четвертой степени с одним неизвестным с помощью разложения на множители и введения вспомогательной переменной.

Уравнение с двумя переменными и его график. Уравнение окружности. Решение систем, содержащих одно уравнение первой, а другое второй степени. Решение задач методом составления систем. Решение систем двух уравнений второй степени с двумя переменными.

В результате изучения учащиеся должны

Знать методы решения уравнений:

а) разложение на множители;

б) введение новой переменной;

в)графический способ.

Уметь решать целые уравнения методом введения новой переменной; решать системы 2 уравнений с 2 переменными графическим способом; решать уравнения с 2 переменными способом подстановки и сложения; решать задачи «на работу», «на движение» и другие составлением систем уравнений.

4. Арифметическая и геометрическая прогрессии

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы n первых членов прогрессии.

5. Элементы комбинаторики и теории вероятностей

В результате изучения учащиеся должны

Знать формулу n –го члена арифметической прогрессии, свойства членов арифметической прогрессии, способы задания арифметической прогрессии; какая последовательность  является геометрической, уметь выявлять, является ли последовательность геометрической, если да, то находить q

Уметь понимать термины «член последовательности», «номер члена последовательности», «формула n –го члена арифметической прогрессии»; применять формулу суммы n –первых членов арифметической прогрессии при решении задач; вычислять любой член геометрической прогрессии по формуле, знать свойства членов геометрической прогрессии; применять формулу при решении стандартных задач; применять формулу S =    при решении практических задач; находить разность арифметической прогрессии; находить сумму n первых членов арифметической прогрессии.; находить; любой член геометрической прогрессии; находить сумму n первых членов геометрической прогрессии; решать задачи.

6. Повторение

В результате изучения учащиеся должны

Знать все основные определения, понятия и формулы.

Уметь использовать их на практике

Список литературы:

  1. Федеральный компонент государственных образовательных стандартов  основного общего  образования (приказ Минобрнауки от 05.03.2004г. № 1089).
  2. Примерная программа общеобразовательных учреждений по алгебре 7–9 классы,  к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н., составитель Т.А. Бурмистрова – М: «Просвещение», 2008. – с. 22-26)

Методическая литература.

1.  Алгебра: Учебник для 9 кл. общеобразоват. учреждений /

     Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.:

     Просвещение, 2009.

2.  Изучение алгебры в 7 – 9 классах: кн. для учителя / Ю.Н. Макарычев,

        Н.Г. Миндюк и др. М.: Просвещение, 2006.

3.   Алгебра. 9 класс: поурочные планы по учебнику Ю.Н. Макарычева и

     др. / авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. – Волгоград:

       Учитель, 2007. – 303 с.

4.  «Дидактические материалы по алгебре» 9 класс. Авторы Л.И. Звавич,      

      Л.В. Кузнецова, С.Б. Суворова – М. «Просвещение»     

5.   Государственный стандарт основного общего образования по математике.

6.   Программы для общеобразовательных школ, гимназий, лицеев: Математика. 5 – 11                       кл/Сост. Г.М. Кузнецова, Н.Г. Миндюк. – 3 изд.,

      стереотип. – М.: Дрофа 2002.

7.Программы общеобразовательных учреждений. Алгебра. 7-9 классы.

       Составитель: Бурмистрова Т.А. – М.: Просвещение, 2009 г.

8.http://school-collection.edu.ru/ – единая коллекция цифровых

      образовательных ресурсов.

Источники информации для учащихся

  1. Алгебра: Учеб. для 9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк и др.; под ред. С.А. Теляковского. М.: Просвещение, 2009.
  2. «Дидиактические материалы по алгебре» 9 класс. Авторы Л.И. Звавич, Л.В. Кузнецова, С.Б. Суворова – М. Просвещение
  3. «Самостоятельные и контрольные работы по алгебре 9 класс». Автор Ершова А.П., Голобородько В.В. –М.: Илекса, 2002


По теме: методические разработки, презентации и конспекты

Рабочая программа 8 класс по алгебре

Рабочая программа 8 класс по алгебре...

Рабочая программа учебного элективного курса «Алгебра плюс: Элементарная алгебра с точки зрения высшей математики» (10-11 класс, профильный уровень)

Рабочая программа элективного учебного курса «Алгебра плюс: Элементарная алгебра с точки зрения высшей математики» для учащихся 10-11 класса составлена на основе авторской программы А.Н. Землякова, ка...

Рабочая программа элективного курса по алгебре и началам анализа для учащихся 11-го класса "Практикум по алгебре»

Рабочая программа элективного курса по алгебре и началам анализа  для учащихся 11-го класса "Практикум по алгебре»...

Рабочая программа 8 класс по алгебре А.Г. Мордкович

Рабочая программа 8 класс по алгебре А.Г. Мордкович по 4 часовой программе...

Рабочая программа 10 класс по алгебре и началам математического анализа (профильный уровень) А.Г. Мордкович

Рабочая программа 10 класс по алгебре и началам математического анализа (профильный уровень) А.Г. Мордкович по 5 часовой программе...

Рабочая программа 9 класса по алгебре

Рабочая программа 9 класса по алгебре (Мерзляк, 102 ч)...

Рабочая программа 8 класса по алгебре

Рабочая программа 8 класса по алгебре (Мерзляк 102 ч)...