Рабочая программа для 6 класса по математике к УМК Н.Я.Виленкина
рабочая программа по алгебре (6 класс) по теме

Худякова Оксана Геннадьевна

Рабочая программа для 6 класса по математике к УМК Н.Я.Виленкина

Скачать:

ВложениеРазмер
Файл rab_prog_6.docx46.45 КБ

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

«Междуреченская СОШ №6»

Согласовано на МС школы.

Протокол №

от «__»_______2012г.

Руководитель МО

___________________

Утверждаю

Директор МБОУ «Междуреченская  СОШ №6»

Приказ №

от «__»_______2012г.

РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА

ПО МАТЕМАТИКЕ

6 КЛАСС

        

                                                                             Составил:

учитель физики,

                                                                                               математики

                                                                                               Худякова Оксана Геннадьевна

        п. Междуреченский

                                                               2012 г.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Статус документа

        Настоящая программа по математике для основной общеобразовательной школы   6 класса составлена на основе

  • Федерального компонента  государственного стандарта основного  общего образования (приказ МОиН РФ от 05.03.2004г. № 1089),
  • Примерных программ по математике  (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263),  
  • «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236),
  • Программы  “Математика 5-6”,Виленкин Н.Я., Жохов В.В.- М.: Дрофа,2004,
  • Учебного плана МБОУ “Междуреченская СОШ №6” на 2012-2013 учебный год.

Содержание программы направлено на освоение учащимися знаний, умений и навыков на базовом уровне, что соответствует Образовательной программе школы. Она включает все темы, предусмотренные федеральным компонентом государственного образовательного стандарта основного общего образования по математике.

 Программа рассчитана на 170 часов, по 5 часов в неделю.

Теоретический материал курса излагается на наглядно-интуитивном уровне, математические методы и законы формулируются в виде правил. Курс строится на индуктивной основе с привлечением дедуктивных рассуждений. Учебный процесс ориентирован на: рациональное сочетание устных и письменных видов работы как при изучении теории, так и при решении задач; сбалансированное сочетание традиционных и новых методов обучения; оптимизированное применение объяснительно-иллюстративных и эвристических методов; использование современных технических средств обучения.

Преобладающей формой текущего контроля выступает письменный (самостоятельные и контрольные работы) и устный опрос.

Срок реализации программы 1 учебный год.

Цели программы обучения: систематическое развитие понятия числа; выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики; подготовка учащихся к изучению систематических курсов алгебры и геометрии.

Задачи программы обучения:

– овладение конкретными математическими знаниями, необходимыми для применения в практической деятельности, для изучения смежных дисциплин;

– интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности;

– формирование представлений о математических идеях и методах;

– формирование преставлений о математике как части общечеловеческой культуры, понимания значимости математики для общественного прогресса.

Структура программы. Рабочая программа состоит из двух разделов: «Содержание обучения», «Требования к математической подготовке учащихся». К программе прилагаются: тематическое и поурочное планирование учебного материала; учебно-методические средства обучения.

В программу внесены несущественные изменения в части распределения учебных часов:

- на изучение параграфа “Делимость чисел” выделено 20 часов вместо 16 часов по программе;

- на изучение параграфа “Сложение и вычитание дробей с разными знаменателями” выделено 22 часа вместо 25 часов по программе;

- на изучение параграфа “Умножение и деление обыкновенных дробей” выделено 31 час вместо 33 часов по программе;

- на изучение параграфа “Отношение и пропорции” выделено 18 часов вместо 17 часов по программе;

-на изучение параграфа “Сложение и вычитание положительных и отрицательных чисел” выделено 11 часов вместо 12 часов по программе;

-на изучение параграфа “Умножение и деление положительных и отрицательных чисел” выделено 12  часов вместо 9 часов по  программе ;

- на изучение параграфа “Решение уравнений” выделено 14 часов вместо 18 часов по  программе ;

- на изучение параграфа “Координаты на плоскости” выделено 13 часов вместо 11 часов по  программе ;

- на итоговое повторение и решение задач по курсу  математики  6-го  класса выделено 13 часов вместо 16 часов по  программе .

В ходе изучения курса запланировано проведение контрольных работ (15), а также самостоятельных работ, математических диктантов, диагностических и тестовых работ (по мере необходимости).

Считаю, что такое распределение часов наиболее эффективно для данного класса.

СОДЕРЖАНИЕ ОБУЧЕНИЯ

Арифметика

Числа и вычисления.

Делители и кратные числа. Признаки делимости. Простые и составные числа. Разложение числа на простые множители. Общее кратное. Нахождение НОД и НОК.

Основное свойство дроби. Сокращение дробей. Сравнение дробей. Арифметические действия с обыкновенными дробями. Нахождение части числа и числа по его части.

Отношения. Пропорции. Основное свойство пропорции.

Решение текстовых задач арифметическими приемами.

Положительные и отрицательные числа. Противоположные числа. Модуль числа. Целые числа. Сравнение чисел. Арифметические действия с положительными и отрицательными числами, свойства арифметических действий.

Рациональные числа. Применение свойств арифметических действий для рационализации вычислений.

Прикидка результатов вычислений.

Этапы развития представлений о числе.

Элементы алгебры

Алгебраические выражения.Буквенные выражения. Числовые подстановки в буквенные выражения. Простейшие преобразования выражений, раскрытие скобок, приведение подобных слагаемых.

Уравнения и неравенства. Уравнение с одной переменной. Корень уравнения. Примеры решения текстовых задач методом составления уравнений (алгебраическим способом).

Числовые неравенства.

Числовые функции. Таблицы и диаграммы. Графики реальных процессов.

Координаты. Изображение чисел точками на координатнойпрямой. Координата точки. Геометрический смысл модуля числа. Прямоугольная система координат.Абсцисса и ордината точки.

Элементы геометрии

Представление о начальных понятиях геометрии и геометрических фигурах.

Параллельные прямые. Перпендикулярные прямые.Многоугольники. Правильные многоугольники. Построение перпендикуляра к прямой и параллельных прямых с помощью угольника и линейки. Площадь круга.

Элементы комбинаторики

Множество. Элемент множества, подмножество. Примеры решения комбинаторных задач: перебор вариантов, правило умножения.

ТРЕБОВАНИЯ К МАТЕМАТИЧЕСКОЙ ПОДГОТОВКЕ УЧАЩИХСЯ

Числа и вычисления

 В результате изучения курса математики учащиеся должны овладеть следующими умениями, представляющими минимум:

– правильно употреблять термины, связанные с различными видами чисел и способами их записи: целое, дробное, рациональное, положительное, отрицательное; переходить от одной формы записи к другой (например, представлять десятичную дробь в виде обыкновенной, проценты – в виде десятичной или обыкновенной дроби);

– производить в уме арифметические действия в пределах сложности примеров на сложение и вычитание двузначных чисел, умножение и деление нацело двузначного числа на однозначное;

– выполнять арифметические действия над обыкновенными дробями (включая обращение смешанного числа в обыкновенную дробь, нахождение общего знаменателя дробей, сокращение дробей и представление их в виде смешанных чисел);

– выполнять арифметические действия с рациональными числами, сочетать при вычислениях устные и письменные приемы;

– сравнивать числа, упорядочивать наборы чисел; понимать связь отношений «больше» и «меньше» с расположением точек на координатной прямой;

– составлять и решать пропорции, решать основные задачи на дроби, проценты;

– округлять натуральные числа и десятичные дроби, производить прикидку результата вычислений.

Выражения и их преобразования

В результате изучения курса математики учащиеся должны овладеть следующими умениями, представляющими минимум:

– правильно употреблять термины «выражение», «числовое выражение», «буквенное выражение», «значение выражения», понимать их использование в тексте, в речи учителя, понимать формулировку заданий: «упростить выражение», «найти значение выражения», «разложить на множители»;

– составлять несложные буквенные выражения и формулы; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления; выражать из формул одни переменные через другие;

– находить значение степени с натуральным показателем.

Уравнения и неравенства

В результате изучения курса математики учащиеся должны овладеть следующими умениями, представляющими минимум:

– понимать, что уравнения – это математический аппарат решения разнообразных задач по математике, смежных областей знаний, практики;

– правильно употреблять термины «уравнение», «неравенство», «корень уравнения»; понимать их в тексте, в речи учителя, понимать формулировку задания «решить уравнение»;

– читать числовые неравенства (в том числе и двойные);

– решать линейные уравнения с одной переменной;

– составлять линейные уравнения по условиям текстовых задач.

Функции

В результате изучения курса математики учащиеся должны овладеть следующими умениями, представляющими минимум:

–познакомиться с примерами зависимостей между реальными величинами (прямая и обратная пропорциональности, линейная функция);

– познакомиться с координатной плоскостью, знать порядок записи координат точек плоскости и их названий, уметь построить координатные оси, отметить точку по заданным координатам, определить координаты точки, отмеченной на координатной плоскости;

– находить в простейших случаях значения функций, заданных формулой, таблицей, графиком;

– интерпретировать в несложных случаях графики реальных зависимостей между величинами, отвечая на поставленные вопросы.

Геометрические фигуры и их свойства. Измерение геометрических величин

В результате изучения курса математики учащиеся должны овладеть следующими умениями, представляющими минимум:

– распознавать на чертежах и моделях геометрические фигуры (отрезки, прямые, лучи, углы, многоугольники, окружности, круги); изображать указанные геометрические фигуры; выполнять чертежи по условию задачи;

– владеть практическими навыками использования геометрических инструментов (линейки, угольника, транспортира, циркуля) для изображения фигур, а также для нахождения длин отрезков и величин углов;

– решать задачи на вычисление геометрических величин (длин, углов, площадей, объемов), применяя свойства фигур и формулы.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

6 класс

(5 ч в неделю, всего 170 ч)

1. Делимость чисел(20 ч)

Делители и кратные натурального числа. Общий делитель и общее кратное. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на множители.

Основная цель: завершить изучение натуральных чисел, подготовить основу для освоения действий с обыкновенными дробями.

В данной теме завершается изучение вопросов, связанных с натуральными числами. Основное внимание должно быть уделено знакомству с понятиями «делитель» и «кратное», а также «общий делитель» и «общее кратное», которые находят применение при сокращении обыкновенных дробей и при их приведении к общему знаменателю. Упражнения полезно выполнять с опорой на таблицу умножения – прямым подбором.

Определенное внимание уделяется знакомству с признаками делимости, понятию простого и составного числа. При их изучении целесообразно формирование умений проводить простейшие умозаключения, обосновывая свои действия ссылками на определение, правило.

У учащихся должно быть сформировано умение раскладывать число на множители. Умение разложить число на простые множители не относится к числу обязательных.

Рассматриваются простейшие комбинаторные задачи.

2. Сложение и вычитание дробей с разными знаменателями(22 ч)

Основное свойство дроби. Сокращение дробей. Приведение дробей к общему знаменателю. Понятие о наименьшем общем знаменателе нескольких дробей. Сравнение дробей. Сложение и вычитание дробей с произвольными знаменателями. Решение текстовых задач.

Основная цель: выработать прочные навыки преобразования дробей, сложения и вычитания дробей.

Одним из важнейших результатов изучения данной темы является усвоение основного свойства дроби, применяемого для преобразования дробей: сокращения, приведения к новому знаменателю. При этом рекомендуется излагать материал без опоры на понятия НОД и НОК. Умение приводить дроби к общему знаменателю используется для сравнения дробей.

При рассмотрении действий с дробями используются правила сложения и вычитания дробей с одинаковыми знаменателями, понятие смешанного числа. Все эти вопросы целесообразно повторить с учащимися. Важно обратить внимание на случай вычитания дроби из целого числа.

3. Умножение и деление обыкновенных дробей(31 ч)

Умножение и деление обыкновенных дробей. Основные задачи на дроби.

Основная цель: выработать прочные навыки арифметических действий с обыкновенными дробями и решения основных задач на дроби.

В этой теме завершается работа над формированием навыков арифметических действий с обыкновенными дробями. Навыки должны быть достаточно прочными, чтобы учащиеся не испытывали затруднений в вычислениях с рациональными числами, чтобы алгоритмы действий с обыкновенными дробями могли стать в дальнейшем опорой для формирования умений выполнять действия с алгебраическими дробями.

При изучении данной темы учащиеся должны усвоить, что для обращения обыкновенной дроби в десятичную достаточно разделить (если это возможно) числитель на знаменатель. В каждом конкретном случае они должны знать, в какую дробь обращается данная обыкновенная дробь – в конечную или бесконечную. При этом не обязательно акцентировать внимание на том, что бесконечная дробь является периодической. Учащиеся должны знать представление в виде десятичной дроби таких дробей, как .

Все рассмотренные алгоритмы, включая умножение дроби на натуральное число и умножения смешанных чисел, должны быть хорошо отработаны.

Расширение аппарата действий с дробями позволяет решать текстовые задачи, в которых требуется найти дробь от числа или число по данному значению его дроби.

4. Отношения и пропорции(18 ч)

Пропорция. Основное свойство пропорции. Решение задач с помощью пропорции. Понятия о прямой и обратной пропорциональности величин. Задачи на пропорции. Масштаб. Формулы длины окружности и площади круга. Шар.

Основная цель: сформировать понятия пропорции, прямой и обратной пропорциональности величин.

Необходимо, чтобы учащиеся усвоили основное свойство пропорции, так как оно находит применение на уроках математики, физики, химии. В частности, достаточное внимание должно быть уделено решению с помощью пропорции задач на проценты.

Понятия о прямой и обратной пропорциональности величин можно сформировать как обобщение нескольких конкретных примеров, подчеркнув при этом практическую значимость этих понятий, возможность их применения для упрощения решения соответствующих задач.

В данной теме даются представления о длине окружности и площади круга. Соответствующие формулы к обязательному материалу не относятся. Рассмотрение геометрических фигур завершается знакомством с шаром.

5. Положительные и отрицательные числа(13 ч)

Положительные и отрицательные числа. Противоположные числа. Модуль числа и его геометрический смысл. Сравнение чисел. Целые числа. Понятие о рациональном числе. Изображение чисел на координатной прямой. Координата точки.

Основная цель: расширить представления учащихся о числе путем введения отрицательных чисел.

Целесообразность введения отрицательных чисел показывается на содержательных примерах. Учащиеся должны научиться изображать положительные и отрицательные числа на координатной прямой. В дальнейшем она будет служить наглядной основой для правил сравнения чисел, сложения и вычитания чисел.

Специальное внимание должно быть уделено усвоению вводимого здесь понятия модуля числа, прочное знание которого необходимо для формирования умения сравнивать отрицательные числа, а в дальнейшем и для овладения алгоритмами арифметических действий с положительными и отрицательными числами.

6. Сложение и вычитание положительных и отрицательных чисел(11 ч)

Сложение и вычитание положительных и отрицательных чисел.

Основная цель: выработать прочные навыки сложения и вычитания положительных и отрицательных чисел.

Действия с отрицательными числами вводятся на основе представлений об изменении величин.Сложение и вычитание чисел иллюстрируется соответствующими перемещениями точек координатной прямой. При изучении данной темы отрабатываются алгоритмы сложения и вычитания при выполнении действий с целыми и дробными числами.

7. Умножение и деление положительных и отрицательных чисел(12 ч)

Умножение и деление положительных и отрицательных чисел. Понятие о рациональном числе. Десятичное приближение обыкновенной дроби. Применение законов арифметических действий для рационализации вычислений.

Основная цель: выработать прочные навыки арифметических действий с положительными и отрицательными числами.

Действие умножения с отрицательными числами вводится на основе представлений об изменении величин. Правила деления отрицательных чисел вводятся. Исходя из смысла определений соответствующих действий.

Навыки умножения и деления положительных и отрицательных чисел отрабатываются сначала при выполнении отдельных действий, а затем в сочетании с навыками сложения и вычитания при вычислении значений числовых выражений.

8. Решение уравнений(14 ч)

Простейшие преобразования выражений: раскрытие скобок, приведение подобных слагаемых. Решение линейных уравнений. Примеры решения текстовых задач с помощью линейных уравнений.

Основная цель: подготовить учащихся к выполнению преобразований выражений, решению уравнений.

Навыки преобразования буквенных выражений отрабатываются лишь в той степени, в которой они необходимы для решения несложных уравнений.

Введение арифметических действий над отрицательными числами позволяет ознакомить учащихся с общими приемами решения линейных уравнений с одним неизвестным путем переноса слагаемых из одной части уравнения в другую, приведения подобных слагаемых, деления обеих частей уравнения на коэффициент при неизвестном. Следует иметь в виду, что в дальнейшем метод составления уравнений становится основным методом решения задач.

9. Координаты на плоскости(13 ч)

Построение перпендикуляра к прямой и параллельных прямых с помощью чертежного угольника и линейки. Прямоугольная система координат на плоскости, абсцисса и ордината точки. Примеры графиков, диаграмм.

Основная цель: познакомить учащихся с прямоугольной системой координат на плоскости.

Созданию представлений о перпендикулярных и параллельных прямых служат наблюдения окружающей обстановки. Учащиеся должны научиться распознавать и изображать параллельные  перпендикулярные прямые. Основное внимание следует уделить отработке навыков их построения с помощью линейки и угольника, не требуя воспроизведения точных определений, обоснования единственности построения и т.п.

Основным результатом знакомства учащихся с координатной плоскостью должны явиться знания порядка записи координат точки плоскости и их названий, умения строить точку по заданным координатам, определять координаты точки, расположенной на координатной плоскости. Этот материал необходим для построения и чтения эмпирических графиков, отдельные примеры которых рассматриваются в теме.

Формированию вычислительных и графических умений способствует построение столбчатых диаграмм. При выполнении соответствующих упражнений найдут применение изученные ранее сведения о масштабе и округлении чисел.

10. Повторение. Решение задач (13 ч)

Делимость чисел. Действия с обыкновенными дробями и смешанными числами. Отношения  пропорции. Действия с рациональными числами. Решение уравнений. Координаты на плоскости.


УЧЕБНО-МЕТОДИЧЕСКИЕ СРЕДСТВА ОБУЧЕНИЯ

  1. Депман И.Я. За страницами учебника математики: книга для чтения учащимися 5 – 6 классов / И.Я. Депман, Н.Я. Виленкин. – М.: Просвещение, 1999. – 288 с.
  2. Жохов В.И. Программа. Планирование учебного материала. Математика. 5-6 классы. –  М.: Мнемозина, 2011. – 32 с.
  3. Жохов В.И. Преподавание математики в 5 – 6 классах: методическое пособие. – М.: Мнемозина, 2008. – 239 с.
  4. Жохов В.И. Математика. 6 класс. Контрольные работы для учащихся общеобразовательных учреждений / В.И. Жохов, Л.Б. Крайнева. – М.: Мнемозина, 2010. – 63 с.
  5. Жохов В.И. Математика. 6 класс. Диктанты для учащихся общеобразовательных учреждений / В.И. Жохов, А.А. Терехова. – М.: Мнемозина, 2010.
  6. ЖоховВ.И. Математический тренажер, 6 класс / В.И. Жохов, В.Н. Погодин. –  М: Мнемозина, 2009 г. – 48 с.
  7. Кузнецова Г.М.  Программы для общеобразовательных школ, гимназий, лицеев. Математика, 5 – 11 кл. / Г.М. Кузнецова, Н.Г. Миндюк. – 4-е изд., стереотип.  М.: Дрофа, 2004. – 320с.
  8. Лысенко Ф.Ф. Тесты для промежуточной аттестации. Математика, 5-6 класс / Ф.Ф. Лысенко, Л.С. Ольхова, С.Ю. Кулабухов. – Ростов-на-Дону: Легион, 2010. – 157 с.
  9. Математика. 6 класс: учебник для общеобразовательных учреждений / Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд. – М.: Мнемозина, 2010. – 288 с.
  10. Попова Л.П. Контрольно-измерительные материалы. 6 класс. – М.: ВАКО, 2010. – 93 с.
  11. Рудницкая В.Н. Рабочая тетрадь по математике №1. 6 класс. – М.: Мнемозина, 2010.
  12. Рудницкая В.Н. Рабочая тетрадь по математике №2. 6 класс. – М.: Мнемозина, 2010.
  13. Учебное интерактивное пособие к учебнику Н.Я. Виленкина, В.И. Жохова, А.С. Чеснокова, С.И. Шварцбурда «Математика» 6 кл. – М.: Мнемозина, 2009. – (CD-ROM)
  14. Чесноков А.С. Дидактические материалы по математике для6 класса / А.С. Чесноков, К.И. Нешков.   – М: Классикс Стиль, 2009. – 165 с.


По теме: методические разработки, презентации и конспекты

рабочая программа 6 класса по математике

рабочая программа по математике для 6 класса к учебнику Н.Я. Виленкин...

рабочая программа 6 класс математика Виленкин

рабочая программа по математике 6 класс...

Рабочая программа по математике в 5 классе. Учебник «Математика-5» Авт. Н.Я.Виленкин, В.И.Жохов и др.

Поурочное планирование по математике  в 5 классе. Учебник «Математика-5» Авт. Н.Я.Виленкин, В.И.Жохов и др....

рабочая программа 5 класс по математике

рабочая программа 5 класс по математике...

Рабочая программа 9 класс по математике

Пояснительная записка.Настоящая программа по математике  для 9 класса составлена на основе·           Федерального закона от 29.12. 2012 г. № 273...

Рабочая программа 5 класс по математики

Рабочая программа ФГОС 5 класс математика...

Рабочая программа 9 класс по математике

Полная рабочая программа и календарно-тематическое планирование к ней....