Рабочая программа по математике 8 класс
рабочая программа по алгебре (8 класс) на тему

Рабочая программа курса математики для 8 класса (базовый уровень) ориентирована на использование  учебников «Алгебра 8» А.Г. Мордкович и задачника « Алгебра 8» А. Г. Мордкович, Т. Н. Мишустина, Е .Е . Тульчинская, «Мнемозина», 2009

«Геометрия 7 – 9»: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2008

Скачать:

ВложениеРазмер
Microsoft Office document icon 8rkrab_progr.doc115 КБ

Предварительный просмотр:

Рабочая программа курса математики для 8 класса (базовый уровень)

Рабочая программа курса математики для 8 класса (базовый уровень) ориентирована на использование  учебников «Алгебра 8» А.Г. Мордкович и задачника « Алгебра 8» А. Г. Мордкович, Т. Н. Мишустина, Е .Е . Тульчинская, «Мнемозина», 2009

«Геометрия 7 – 9»: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2008

Пояснительная записка

Данная рабочая программа по математике составлена на основе следующих нормативно - правовых документов:

-федерального компонента государственного стандарта основного общего образования,

- примерной программы по математике основного общего образования,

- федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2013-2014 учебный год (Приказ Министерства образования и науки Российской Федерации (Минобрнауки России) от 19 декабря 2012 г. N 1067 г. Москва «Об утверждении федеральных перечней учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2013/14 учебный год»)

- Учебного  плана ОУ  МОУ СОШ № 3 г. Балашова на 2013/2014 учебный год

- Закона Российской Федерации «Об образовании» (статья 9)..

Планирование составлено на основе программы для общеобразовательных учреждений: Математика. 5-11 классы / авт.-сост. И.И. Зубарева, А.Г. Мордкович. – М.: Мнемозина, 2007, рекомендованная Департаментом образовательных программ и стандартов общего образования МО РФ и программы для общеобразовательных учреждений авторов Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева.

Предполагается обучение в объеме  170  часов (5 ч в неделю).

Курс «Математика-8» включает в себя два предмета: алгебра  (102ч)  и  геометрия (68ч). Календарно-тематический план разработан применительно к учебной программе по математике для общеобразовательных, рекомендованной Департаментом образовательных программ и стандартов общего образования Министерства образования Российской Федерации.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.  Рабочая программа выполняет две основные функции:

Информационно-методическая функция позволяет всем участникам образовательного процесса получить представление о целях, содержании, общей стратегии обучения, воспитания и развития учащихся средствами данного учебного предмета.

Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, определение его количественных и качественных характеристик на каждом из этапов, в том числе для содержательного наполнения промежуточной аттестации учащихся.

Изучение математики в 8 классе направлено на достижение следующих целей:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.

Задача образовательного процесса: обеспечить усвоение учащимися обязательного минимума содержания на основе требований государственного образовательного стандарта.

Цели обучения математики в общеобразовательной школе определяются ее ролью в развитии общества в целом и формировании личности каждого отдельного человека. Алгебра нацелена на формирование математического аппарата для решения задач из математики и смежных предметов (физика, химия, основы информатики и вычислительной техники и др.).

Курс алгебры построен в соответствии с традиционными содержательно-методическими линиями: числовой, функциональной, алгоритмической, уравнений и неравенств, алгебраических преобразований. В курсе алгебры 8-го класса продолжается применение формул сокращенного умножения в преобразованиях дробных выражений. Главное место занимают алгоритмы действий с дробями. Формируются понятия иррационального числа на множестве действительных чисел, арифметического квадратного корня. Особое внимание уделяется преобразованиям выражений, содержащих квадратные корни. Даются первые знания по решению уравнений вида , где , по формуле корней, что позволяет существенно расширить аппарат уравнений, используемый для решения текстовых задач. Продолжается изучение числовых неравенств, на которых основано решение линейных неравенств с одной переменной. Вводится понятие о числовых промежутках. Изучаются свойства функций , при  и , и . Выявляется связь функции  с функцией , где . Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит  вклад в развитие логического мышления, в формирование понятия доказательства.

В курсе геометрии 8-го класса продолжается решение задач на признаки равенства треугольников, но в совокупности с применением новых теоретических факторов. Теореме о сумме углов выпуклого многоугольника позволяет расширить класс задач. Формируется практические навыки вычисления площадей многоугольников в ходе решения задач. Особое внимание уделяется применению подобия треугольников к доказательствам теорем и решению задач. Даются первые знания о синусе, косинусе и тангенсе острого угла прямоугольного треугольника. Даются учащимся систематизированные сведения об окружности и её свойствах, вписанной и описанной окружностях. Серьезное внимание уделяется формированию умений рассуждать, делать простые доказательства, давать обоснования выполняемых действий. Параллельно закладываются основы для изучения систематических курсов стереометрии, физики, химии и других смежных предметов.

Место предмета в федеральном базисном учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики на ступени основного общего образования отводится 5 ч в неделю в 8 классе.

Планируется использование следующих педагогических технологий в преподавании предмета:

ИКТ, дифференцируемое обучение, метод проектов при изучении темы: Квадратные уравнения, площади, теорема Пифагора.

В течение года возможны коррективы рабочей программы, связанные с объективными причинами.

 

Содержание тем учебного курса

Повторение курса 7-го класса (5 часов)

Алгебраические дроби (18 часов)

Основное свойство дроби, сокращение дробей. Сложение и вычитание алгебраических дробей. Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень. Преобразование рациональных выражений. Первые представления о решении рациональных уравнений. Степень с рациональным показателем.

Основная цель – выработать умение выполнять преобразования алгебраических дробей. Изучение темы начинается с введения понятия алгебраической дроби, её числового значения и допустимых значений, входящих в неё букв.

Многоугольники(14 часов)

Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.

Цель: изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.

Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.

Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.

Функция у=. Свойства квадратного корня (18 часов)

Рациональные числа. Понятие квадратного корня из неотрицательного числа. Иррациональные числа. Множество действительных чисел. Свойства числовых неравенств. Функция у=, её свойства и график. Свойства квадратных корней. Преобразование выражений, содержащих операцию извлечения квадратного корня. Алгоритм извлечения квадратного корня. Модуль действительного числа. График функции у=, формула .

Основная цель – систематизировать сведения о рациональных числах, ввести понятие иррационального и действительного чисел. Научить выполнять простейшие преобразования выражений, содержащих квадратные корни.

Площади (14 часов)

Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Цель: расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.

Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для обучающихся.

Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.

Квадратичная функция. Функция у=k/х (18 часов)

Функция у=kх2, её свойства и график. Функция у=k/х, её свойства и график. Как построить график функции у=f(х+l)+m, если известен график функции у=f(х). Функция у=ах2+bх+с, её свойства и график. Графическое решение квадратных уравнений. Дробно-линейная функция, её свойства и график. Как построить графики функций у=│f(х)│и у=f│х│, если известен график функции у=f(х).

Основная цель – научить строить график функции обратной пропорциональности, применять свойства функции  при решении упражнений. В данной теме рассматриваются  упражнения на свойства и график функции  и на построение графика функции y = f(x + m) + n, если известен график функции y = f(x).

Подобные треугольники (20 часов)

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

Цель: ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.

Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.

На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках  в  прямоугольном  треугольнике.   Дается  представление о методе подобия в задачах на построение.

        В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.

Квадратные уравнения (21час )

Основные понятия, связанные с квадратными уравнениями. Формулы корней квадратных уравнений. Теорема Виета. Разложение квадратного трёхчлена на линейные множители. Рациональные уравнения как математические модели реальных ситуаций.

Основная цель – выработать умения решать квадратные уравнения, уравнения, сводящиеся к квадратным уравнениям, и применять их к решению задач. В данной теме рассматриваются примеры решения уравнений с параметрами.

Окружность (16часов)

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная  и описанная окружности.

Цель: расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя замечательными точками треугольника.

В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.

Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.

Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.

Неравенства ( 16 часов )

Линейные неравенства. Квадратные неравенства. Доказательство неравенств. Приближённые вычисления. Стандартный вид положительного числа.

Основная цель – сформировать умение решать неравенства первой степени с одной переменной и квадратные неравенства с помощью графика квадратичной функции и методом интервалов.

Действительные числа.

Основная цель – познакомить учащихся с понятием погрешности приближения как показателем точности и качества приближения, выработать умение решать уравнения, содержащие знак модуля, строить и преобразовывать графики функции, содержащих знак модуля. В данной теме рассматриваются свойства степени с отрицательным целым показателем, стандартный вид числа.

Итоговое повторение ( 10 часов )

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс 8 класса.

Учебно-тематический план

по математике

Класс     8

Количество часов :  

Всего    175 часов;

В неделю 5 часов.

Плановых контрольных уроков   16

Практических работ      3

№ темы

Название темы

Количество часов

Количество

к/р

Количество практ.раб.

1.

Повторение курса 7 класса

5

1

2.

Алгебраические дроби

18

2

1

3.

Многоугольники

14

1

4.

          Функция у=√х.

Свойства квадратного корня

18

1

5.

Площади

14

1

6.

Квадратичная функция .Функция у = k/х

18

2

7.

Подобные треугольники

20

2

2

8.

Квадратные уравнения

21

2

9.

Окружность

16

1

10

Неравенства

16

2

11

Итоговое повторение

15

1

Итого

175

16

Требования

к уровню подготовки учащихся, обучающихся по данной программе

В результате изучения курса алгебры 8 класса обучающиеся должны:

знать:  Определение алгебраической дроби, основное свойства дроби, правила сложения, вычитания, умножения и деления дробей. Определение  квадратичной функции, функции у = , функции у = х, их свойства.  Определение квадратного уравнения, алгоритм решения квадратных, биквадратных уравнений, теорему Виета. Определение рационального, иррационального, действительного чисел. Определение числового неравенства,  свойства числовых  неравенств.

уметь: Приводить алгебраические дроби к одному знаменателю, выполнять тождественные преобразования. Строить графики квадратичной функции, функции  у=√х. Извлекать квадратные корни из неотрицательного числа. Раскладывать квадратный трёхчлен на множители, решать полное и неполное квадратное уравнение с помощью дискриминанта, или по теореме Виета. Решать простейшие уравнения с модулем. Решать квадратные неравенства.

владеть компетенциями:   познавательной, коммуникативной, информационной и рефлексивной.

способны решать следующие жизненно-практические задачи:   Самостоятельно приобретать и применять знания в различных ситуациях, работать в группах, аргументировать и отстаивать свою точку зрения, уметь слушать  других, извлекать учебную информацию на основе сопоставительного анализа объектов, пользоваться предметным указателем  энциклопедий  и справочников для нахождения информации, самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем.

В результате изучения курса геометрии 8 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • каким образом геометрия возникла из практических задач землемерия;  примеры геометрических объектов и утверждений о них, важных для практики;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

уметь

  • пользоваться языком геометрии для описания предметов окружающего мира;
  • распознавать геометрические фигуры, различать их взаимное расположение;
  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
  • распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
  • в простейших случаях строить сечения и развертки пространственных тел;
  • проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
  • вычислять значения геометрических величин (длин, углов, площадей, объемов), в том числе: для углов от 0 до 180 определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
  • решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
  • решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • описания реальных ситуаций на языке геометрии;
  • расчетов, включающих простейшие тригонометрические формулы;
  • решения геометрических задач с использованием тригонометрии
  • решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
  • построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Литература

 «Алгебра – 8» 1 часть – учебник, 2 часть – задачник.

    автор А.Г. Мордкович изд. «Мнемозина» 2009 год.

Тесты Алгебра 7-9 класс

  авторы А.Г. Мордкович, Е.Е. Тульчинская

 Ю.П. Дудницын, Е.Е. Тульчинская

 «Алгебра – 8» контрольные работы под редакцией А. Г. Мордковича.

А.Г. Мордкович Алгебра 7-9 Методическое пособие для учителя, А.Г. Мордкович , Е.Е. Тульчинская  

Алгебра 7-9 .Контрольные работы (под ред. А.Г. Мордковича) «Мнемозина» ,2004г.

Для информационно-компьютерной поддержки учебного процесса предполагается использование следующих программно-педагогических средств, реализуемых с помощью компьютера: «Алгебра не для отличников»,

Геометрия, 7 – 9: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2008.

Б.Г. Зив, В.М. Мейлер, А.П. Баханский. Задачи по геометрии для 7 – 11 классов. – М.: Просвещение, 2005.

С.М. Саакян, В.Ф. Бутузов. Изучение геометрии в 7-9 классах: Методические рекомендации к учебнику. Книга для учителя. – М.: Просвещение, 2005.

 Учебно-тренировочные материалы для подготовки учащихся / ФИПИ-М.:Интеллект-Центр.

Н.Ф. Гаврилова «Дифференцированный подход к планированию уроков геометрии». изд. Москва «Вако» 2005 год.



По теме: методические разработки, презентации и конспекты

Рабочая программа по математике в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по математики 5-9 классы. Математика 5 класс: И.И.Зубарева, А.

Рабочая программа разработана  на один учебный год:   в основу программы положены педагогические и дидактические принципы (личностно ориентированные; культурно ориентированные; деятельно...

Рабочая программа по математике класс (автор Виленкин Н.Я.))

Рабочая проргамма содержит пояснительную записку, календарно-тематическое планирование, требования  к подготовке учащихся...

Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс

Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...

РАБОЧАЯ ПРОГРАММА по математике для 5-х классов Разработана на основе примерной рабочей программы ( автор – составитель О.С. Кузнецова ) учителем математики ГБОУ школы № 645 Старковской С.Н

Настоящая рабочая программа разработана в соответствии с основными положениями федерального государственного образовательного стандарта основного общего образования по математике....

Рабочая программа по Математике 5 класса (Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под ред. В.В.Воронковой и учебника «Математика» М.Н. Перова, Г.М. Капустина)

Рабочая программа  составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида,  под редакцией доктора педагогических наук В.В.Воронковой Сб.1. –М.:...

РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М.

РАБОЧАЯ ПРОГРАММА        Предмет    математика      Класс         5 Учитель      Асессорова Е.М...