Спецкурс по математике (8 класс)
календарно-тематическое планирование по алгебре (8 класс) по теме

Татьяна Ильинична Собко

Данный спецкурс реализует взаимосвязь между предметами математики и информатики. Его цель - углубление знаний учащихся по теории вероятностей. 

Скачать:

ВложениеРазмер
Файл spetskurs_v_ns-portal.docx21.45 КБ

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

«Боградская средняя общеобразовательная школа»

Утверждаю                                                  Согласовано                                                          Рассмотрено

Директор                                                     зам.директора                                                      на заседании

МБОУ «Бограсдкая СОШ»                       по УВР                                                                     МО

_________Краснов Д.А.                           _____________Чмыхало О.Г.                            протокол №_____

«_____»________2013г.                          «_____»________2013г.                                     от «_____»_________2013г.

                                                                                                                                                          Руководитель МО

                           

                                                                                                                                                         _______Потылицына Л.В.

РАБОЧАЯ ПРОГРАММА

СПЕЦКУРСА ПО МАТЕМАТИКЕ

ДЛЯ УЧАЩИХСЯ 8 «б» ОБЩЕОБРАЗОВАТЕЛЬНОГО КЛАССА

НА 2013-2014 УЧЕБНЫЙ ГОД

       

                                                                                                                              Составил:

                                                                                                                              Учитель математики

                                                                                                                              МБОУ «Боградская СОШ»

                                                                                                                              Собко Т.И.

2013-2014 уч.год

Пояснительная  записка

Актуальность программы

В настоящее время нет необходимости в обосновании того, что комбинаторные задачи имеют огромное практическое применение при решении прикладных задач. Рассмотрение с учащимися комбинаторных задач и методов их решения способствует значительному повышению их математической и алгоритмической культуры. Комбинаторные задачи представляют богатый материал для изучения основных конструкций, методов и приемов программирования, позволяют показать не только красоту математики, но и возможности новых компьютерных технологий при решении практических математических задач.  Задачи дискретной математики, к которым относятся многие задачи практического программирования и большинство олимпиадных задач по информатике, часто сводятся к перебору различных комбинаторных конфигураций объектов и выбору среди них наилучшего, с точки зрения условия той или иной задачи. Поэтому знание алгоритмов генерации наиболее распространенных комбинаторных конфигураций является необходимым условием успешного решения задач в целом. Опыт проведения занятий показал, как велика роль  комбинаторных задач как средства развития мышления учащихся, формирования приемов умственной деятельности, кроме этого поддерживается на достаточно высоком уровне познавательный интерес учащихся и к математике, и к информатике, идет укрепление межпредметных связей.

Новизна программы

Данный спецкурс реализует взаимосвязь между предметами математики и информатики.

Основная идея, положенная в основу программы, - вычисление вариантов решения комбинаторных задач с помощью компьютера на уроках информатики и в домашних условиях.

В школьном курсе математика и информатика  рассматриваются как две отдельные дисциплины,  и наверно было бы очень эффективно показать учащимся непрерывную связь этих двух дисциплин. Уже на первых практических занятиях учащиеся сталкиваются с первыми трудностями: приходится производить математические вычисления с очень большими величинами, некоторые задачи возможно решить только путем перебора огромного количества вариантов. Существует большой класс комбинаторных задач, решение которых стало возможно лишь с появлением электронных вычислительных машин. При подобном распределении практических занятий происходит постепенное и наиболее качественное усвоение учащимися фундаментальных понятий комбинаторики. Возможность перейти от долгого ручного счета к автоматизированным действиям на компьютере позволяет более полно и быстро разобрать большее количество примеров.

     

Цель программы:

Углубление знаний учащихся по теории вероятности, развитие логического мышления.

Задачи:

  1. Рассмотреть основной понятийный аппарат вычислительной комбинаторики.
  2. Дать понятие комбинаторной задачи и научить решать вычислительные комбинаторные задачи.

Методологические  основы программы

Данная программа разработана в соответствии с требованиями к образовательному стандарту. В основу программы легли отдельные темы  курсов математики и информатики, но сама программа основана  на интеграции этих предметов, структурировании имеющегося учебного материала. Выбранные темы являются основополагающими при решении информационных задач и наиболее часто встречающиеся в практической  деятельности.

 Программа рассчитана на 1 час в неделю на II полугодие 2013-2014 учебного года. На занятиях применяются коллективные, групповые и индивидуальные формы работы.

Прогнозируемые результаты

Полученные знания, умения и навыки при изучении данного курса позволяют повысить мотивацию учащихся,  применяются при написании исследовательских работ, при решении олимпиадных задач, повысить качество выполняемых работ по ГИА и ЕГЭ.

Учебно-тематический план

(1 час в неделю во II полугодии, всего 17 часов согласно УП МБОУ «Боградская СОШ»)

ТЕМА

Кол-во час.

Содержание

1

Исторический обзор

1

Основные понятия комбинаторики. Термины и символы. Развитие комбинаторики. Магические квадраты. Понятие вероятности и зарождения науки о закономерностях случайных явлений. Исторические задачи.  

2

Элементы теории множеств

4

Познакомить с понятиями конечного множества, выборки с повторениями и без повторений, упорядоченной и неупорядоченной. Научить определять характер выборки. Определить понятия пересечения, объединения, дополнения множеств.

2

Введение в комбинаторику

12

Понятие комбинаторной задачи. Правило умножения. Дерево вариантов. Пространство перебора и как избежать перебора. Перестановки, размещения, сочетания. Сокращение перебора. Отсечение лишних вариантов. Разбор задачи о расстановке ферзей. Использование симметрии. Группирование элементов. Факториалы. Использование рекурсии для записи алгоритма. Решение задач при помощи перебора с возвратом. Треугольник Паскаля. Бином Ньютона.

Всего

17

Календарно-тематическое планирование

№ заня

тия

Наименование

темы

Содержание   учебного

материала

Форма  занятия

Средства обуче

ния

Должны знать

Должны уметь

Дата

1

2

3

4

5

6

7

1

Исторический обзор

Исторический путь развития комбинаторики, методы исследования.

лекция

презентация

Историю появления раздела математики – комбинаторика.

2,3,4,5

Элементы теории множеств

Понятие множества, выборка с повторениями и без повторений. Понятия пересечения, объединения, дополнения множеств. Процедуры и функции для работы с множествами.

лекционно-практическая

Понятие множества и подмножества. Операции над множествами.

Применять процедуры и функции, предназначенные для работы с множествами.

6

Понятие комбинаторной задачи. Правило умножения. Дерево вариантов.

Понятие комбинаторной задачи. Правило умножения. Дерево вариантов.

лекционно-практическая

презентация

Определять комбинаторные задачи.

Находить способы решения задач.

7,8

Пространство перебора и как избежать перебора.

Разбор переборных задач.

лекционно-практическая

Алгоритмы сокращения переборов.

Решать задачи с помощью переборов. Сокращать перебор или вообще его избегать.

9,10

Перестановки, размещения, сочетания.

Размещения, разбиения числа на слагаемые, скобочные последовательности.

лекционно-практическая

презентация

Применять формулы перестановки, размещения и сочетаниями.

11

Сокращение перебора. Отсечение лишних вариантов.

Принципы подхода при сокращении перебора Задача о расстановке n ферзей.

лекционно-практическая

презентация

Алгоритм сокращения, перебор, отсечения лишних вариантов.

Сокращать перебор. Отсекать лишние варианты.

12

Использование симметрии.

Прием использования симметрии. Задача о шашках и о ферзях.

лекционно-практическая

Алгоритмы использования симметрии.

Сокращать перебор за счет  симметрии.

13

Группирование элементов.

Задача о расстановке знаков и задача о минимальном пути.

лекционно-практическая

Алгоритмы группировки элементов.

Применять алгоритмы группировки элементов при решении задач.

14,

15

Факториалы. Использование рекурсии для записи алгоритма.

Общая схема алгоритма с возвратом. Задача о раскраске карты, укладка рюкзака.

лекционно-практическая

презентация

Рекурсивный метод решения задач.

Улучшать алгоритм с помощью рекурсии.

16

Решение задач при помощи перебора с возвратом.

Алгоритмы перебора с возвратом.

лекционно-практическая

Понятие метода «перебор с возвратом»

Применять алгоритмы перебора с возвратом.

17

Треугольник Паскаля. Бином Ньютона.

лекционно-практическая


По теме: методические разработки, презентации и конспекты

Рабочая программа спецкурса по математике 6 класс "Математика вокруг нас"

Рабочая программа спецкурса позволят рассматривать задания повышенного уровня сложности, готовит учащихся к олимпиадам...

Программа ориентированного спецкурса по математике 8 класс

Пояснительная запискаЭлективный курс «Математические чудеса и тайны» предназначен для учащихся 8-х классов общеобразовательной школы, является предметно- ориентированным и направлен на углубленное изу...

Программа спецкурса по математике, 5 класс

На дополнительных часах по математике  в 5 классе с большим интересом решаем задачи по программе "За пределами учебника математики". Даже "слабенькие" ребятки очень стремятся активно участвовать ...

Программа спецкурса по математике, 5 класс

На дополнительных часах по математике  в 5 классе с большим интересом решаем задачи по программе "За пределами учебника математики". Даже "слабенькие" ребятки очень стремятся активно участвовать ...

Спецкурс по математике 9 класс

Программа спецкурса по математике для 9 класса с целью дополнительной подготовки к ОГЭ...

Программа спецкурса "Занимательная математика" (5 класс)

Методическая разработка. Программа спецкурса по математике для учащихся 5 класса. Данная программа может быть реализована за счет часов школьного компонента, призвана повысить у учащихся интерес к пре...

Спецкурс по математике 11 класс

Спецкурс по математике "За пределами школьного курса математики"...