Решени квадратных уравнений - закрепление
план-конспект урока по алгебре (8 класс) по теме

Ершова Любовь Германовна

На уроке повторить, обобщить знания по теме «Квадратные уравнения»; учить учить сравнивать, делать выводы; показать учить сравнивать, делать выводы.

  •  

Скачать:


Предварительный просмотр:

Урок провела Л.Г. Ершова

18.03.2013.

Урок алгебры в 8 классе

Тема: «Решение квадратных уравнений»

Тип урока: повторительно-обобщительный

Форма проведения: туристический поход – путешествие по Стране квадратных уравнений.

Цели урока:

  1. Дидактические
  1. повторить, обобщить знания по теме «Квадратные уравнения»;
  2. учить сравнивать, делать выводы;
  3. показать практическое приложение темы.
  1. Развивающие
  1. развивать логическое мышление и мировоззрение учащихся.
  1. Воспитательные:
  1. Воспитание у школьников устойчивого интереса к математике.

Ход урока.

Организационный момент.

Мой юный друг!

Сегодня ты пришел вот в этот класс,

Чтоб посидеть, подумать, отдохнуть,

Умом своим на все взглянуть.

Пусть ты не станешь Пифагором,

Каким хотел бы, может быть,

Но будешь ты рабочим, а может и ученым,

И будешь, я надеюсь, математику любить.

Ребята, сегодня у нас не совсем обычный урок. Мы с вами отправляемся в путешествие по одной математической стране. А как она называется, вы сможете узнать, если выполните следующее задание.

Решить анаграммы (в словах изменен порядок букв). Какие слова зашифрованы?

  1. таиимдкирнн (дискриминант)
  2. ренунеави (уравнение)
  3. эцнткфиеофи (коэффициент)
  4. биерагпол (гипербола)
  5. ерпенаемня (переменная)

– Исключите лишнее слово по смыслу (гипербола).

– Что объединяет остальные слова? (квадратные уравнения)

Да, сегодня мы с вами отправимся в туристический поход по Стране квадратных уравнений. Вспомним и обобщим все те знания, которые вы получили на предыдущих уроках, готовясь к этому «походу».

Итак, откройте тетради и запишите тему урока «Решение квадратных уравнений».

Устная работа.

Для того, чтобы поход был успешным, необходимо теоретически исследовать территорию путешествия.

1. Вопросы классу:

– Дайте определение квадратного уравнения.

– Какое уравнение является неполным?

– Как решаются неполные квадратные уравнения?

– Какими способами можно решить полное квадратное уравнение?

– Запишите формулы, с помощью которых решают полные квадратные уравнения.

Решить уравнения (устно):

2х2 – 18 = 0

3х2 – 12х = 0

2,7х2 = 0

х2 + 16 = 0

6х2 – 18 = 0

х2 – 5х = 0

4х2 + 36 = 0

12 + 4х2 =0

– Какое из уравнений этой группы будет лишним? Почему?

х2 – 5х + 1 = 0

9х2 – 6х + 10 = 0

х2 + 2х – 2 = 0

х2 – 3х – 1 = 0

– Какое квадратное уравнение называют приведенным?

– каким способом можно решить приведенное квадратное уравнение?

Поход начался.

I. Итак, вы готовы к путешествию. Отправляемся в путь!

Мы подошли к границе Страны квадратных уравнений. Для того, чтобы нам разрешили ее пересечь, необходимо выполнить следующие задания.

а) Докажите, что для любого значения d уравнение (d – 3)х2 + (d + 2)х + 1 = 0 имеет два корня. (Один ученик работает у доски с комментированием, остальные – работают в тетради).

б) Решить уравнение: х2 +  – 6 = 0

в) Определите, при каких значениях m и n уравнение (х m)(х – n) = m2 имеет корни.

(задания б) и в) два ученика выполняют самостоятельно у доски,

остальные – в тетради).

Дополнительные вопросы ученикам, отвечающим у доски:

– Сколько корней имеет уравнения:

х2 – 1 = 0

(у – 2)2 + 4 = 0

(m – 1)2 = 0

(Пока учащиеся выполняют это задание, несколько учеников получают индивидуальные карточки-задания, затем сдают на проверку).

Карточка 1.

Определите знаки корней уравнения (если они существуют), не решая уравнения:

а) х2 + 10х + 17 = 0

б) у2 – 13х – 11 = 0

в) 2 – 17х + 93 = 0

Карточка 2.

Пусть х1 и х2 – корни уравнения х2 + 7х – 11 = 0. Не решая уравнение, найдите:

а) (х1)2 + (х2)2;                        б)  + .

Карточка 3.

При каком значении а уравнение х2 – ах + 9 = 0 имеет два равных корня?

Карточка 4.

Решить уравнения:

а) (х – 2)(х + 2) = 7х – 14;                        б) 5(х + 2)2 = – 6х – 44

Карточка 5.

Решите относительно х уравнение: сх2 – 6сх + 3х = 15 – 5с.

II. Продвигаясь вглубь по стране, мы подходим к поляне, которая носит название вам известной теоремы. (стихотворение заранее готовится одним из учеников).

По праву достойна в стихах быть воспета

О свойствах корней теорема Виета.

Что лучше, скажи, постоянство такого:

Умножишь ты корни – и дробь уж готова:

В числителе с в знаменателе а.

А сумма корней тоже дроби равна:

Хоть с минусом дробь, что за беда

В числителе b, в знаменателе а.

Вопросы к классу:

– Сформулируйте теорему Виета для приведенного квадратного уравнения.

– Сформулируйте теорему, обратную теореме Виета.

Самостоятельная работа.

1 вариант.

х2 – 14х + 33 = 0

35 – у2 = 0

60а + а2 = 0

2 вариант.

х2 – 12х – 45 = 0

4,5у у2 = 0

а2 –  12 = 0

(Учащиеся обмениваются тетрадями – взаимопроверка).

Задержимся на поляне теоремы Виета и выполним несколько заданий.

а) При каких значениях d корни уравнения (d – 3)х2 + (d + 2)х + 1 =0 будут взаимно противоположными числами?

б) Составить приведенное квадратное уравнении, корнями которого являются числа х1 = 7, х2 = 2.

в) найти с в уравнении х2 + 12х + с = 0, если известно, что разность квадратов корней равна 288.

(Задания б) и в) два ученика выполняют самостоятельно у доски).

Дополнительные вопросы:

Найти подбором корни уравнений.

а) х2 – 6х + 8 = 0

б) х2 – 2х – 15 = 0

в) х2 – 15х + 36 = 0

г) х2 – 9х + 20 = 0

д) х2 + 11х – 12 = 0

е) х2 + х – 56 = 0

III. Покинув поляну теоремы Виета и двигаясь дальше, мы подходим к распутью трех дорог. А здесь стоит тысячелетний камень с надписью:

«Налево пойдешь – домой попадешь,

Направо пойдешь – работу найдешь,

Прямо пойдешь – в прошлое забредешь».

Предлагаю разделиться.

  1. На поиски работы отправится.... Он испытает себя в роли архитектора (сильный ученик получает карточку с заданием).

Задание: Создан проект теплицы. На ее покрытие имеется 89 м2 полиэтиленовой пленки. Заданы размеры теплицы: высота – 2 м, длина – 5 м, наклон крыши - 45°. Найдите такую ширину теплицы, чтобы оптимально использовать пленку.

  1. По левой дороге пойдет .... Внимание на экран (просматривается видеозапись инсценированной задачи).

Задача: Дочь-восьмиклассница возвращается домой:

– Мамочка, мы всем классом к Новому году решили обменяться фотоснимками.

– Это хорошо. Память будет. Но это ж сколько фото надо?

– А мы сосчитали – 650. Нас в классе ....

– Подожди не говори. Я сама сосчитаю.

– Так сколько учеников в классе?

  1. А все остальные пойдут прямо. Решим одну из задач знаменитого индийского математика ХII века Бхаскары.

Обезьянок резвых стая,

Власть поевши, развлекалась.

Их в квадрате часть восьмая

На поляне забавлялась.

А 16 по лианам

Стали прыгать, повисая.

Сколько было обезьянок,

Ты скажи мне в этой стае?

Итог урока.

На этом, к сожалению, наше путешествие подходит к концу. Поделитесь своими впечатлениями.

Вопросы классу.

– Что нового узнали?

– В какой момент путешествия было наиболее трудно? Почему?

– Что больше всего понравилось и запомнилось? Почему?

Благодарю всех членов туристической группы за интересное путешествие. Надеюсь, что в дальнейшем вы также успешно будете путешествовать по другим странам, и не только математическим. Спасибо за урок.


По теме: методические разработки, презентации и конспекты

Эффективное решение квадратных уравнений. Приемы устного решения.

     Квадратные уравнения – это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических,...

урок по информатике в 9 классе по теме "Решение задач с конструкцией ветвление. Алгоритм решения квадратного уравнения"

Конспект и презентация к уроку в 9 классе по теме "Алгоритм решения квадратного уравнения"...

Технологическая карта урока математики в 8 классе "Решение квадратных уравнений" (закрепление)

Обобщить умения решать  комбинированные задачи с использованием алгоритмов решения квадратных уравнений....

Конспект урока по теме: квадратные уравнения. Решение квадратных уравнений.

Урок в 8 классе по теме          Учитель математики: Папшева  Ю.А.   Тема урока: Квадратные уравнения. Ре...

Решение уравнений, сводимых к решению квадратных уравнений

Тема «Решение квадратных уравнений» изучается в 8 классе, и она является одной из самых важных тем при изучении математики. В старших классах при изучении  различных тем, мы возвращае...

Методические рекомендации к изучению темы: « Решение квадратных уравнений» с применением теоремы Виета для решения приведенного квадратного уравнения и полного квадратного уравнени

Решать квадратные уравнения учащимся приходится часто в старших классах,  Решение иррациональных,  показательных , логарифмических ,тригонометрических уравнений  часто сводится к решени...

Буклет "Способы решения квадратных уравнений и уравнений, приводимых к ним"

Буклет в виде памятки по решению распространненных видов квадратных уранений (полных и неполных), а ткаже уравнений, приводимых к квадратным....