Рабочая программа по математике 5 класс
календарно-тематическое планирование по алгебре (5 класс) по теме
Рабочая программа по математике 5 класс. Автор учебника Н.Я. Виленкин "Математика, 5 класс". В программе есть пояснительная записка и календарно-тематический план уроков.
Скачать:
Вложение | Размер |
---|---|
ktp_po_matematike_5_klass_2012-2013.docx | 109.86 КБ |
Предварительный просмотр:
Календарно-тематическое планирование по учебнику Н.Я. Виленкина «Математика, 5 кл»
Рассмотрено на заседании МО учителей естественно-математического цикла "Искатели" МАОУ Сладковского района Усовская СОШ Протокол № __ от «__» сентября 2012 года Руководитель МО ___________ /Т.Д. Лукина/ | "Согласовано" Заместитель директора по УВР МАОУ Сладковского района Усовская СОШ ____________ /М.А. Кондрашенко/ "__" сентября 2012 года | "Утверждаю" Директор МАОУ Сладковского района Усовская СОШ ______________ /А.А. Чудинова/ "__" сентября 2012 года |
Календарно – тематический план
Предмет: математика
Класс: 5
Годовое количество часов: 170
Количество часов в неделю: 5
Плановое количество контрольных, практических, лабораторных работ: контрольных работ – 14+4
Учебный год: 2012 – 2013 учебный год
Ф.И.О. учителя: Горшунова Оксана Романовна
Пояснительная записка
к календарно – тематическому планированию по математике – 5 класс
Класс | Количество часов в неделю согласно учебному плану школы | Реквизиты программы | ||
Федеральный компонент | Региональный компонент | Школьный компонент | ||
5 | 5 | Программа. Планирование учебного материала. Математика. 5-6 классы / [авт.-сост. В.И. Жохов]. – 2-е изд., стер. – М.: Мнемозина, 2010. – 31 с. |
Количество контрольных работ по математике 5 класс
№ п/п | Предмет | I четверть | II четверть | III четверть | IV четверть | ||||
План | Факт | План | Факт | План | Факт | План | Факт | ||
1 | Математика |
Статус документа
Настоящая программа по математике для основной общеобразовательной школы 5 класса составлена на основе
- федерального компонента государственного стандарта основного общего образования (приказ МОиН РФ от 05.03.2004г. № 1089),
- примерных программ по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263),
- «Временных требований к минимуму содержания основного общего образования» (приказ МО РФ от 19.05.98. № 1236),
- Программа. Планирование учебного материала. Математика. 5-6 классы / [авт.-сост. В.И. Жохов]. – 2-е изд., стер. – М.: Мнемозина, 2010. – 31 с.
Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.
Цели изучения:
- воспитание у обучающихся средствами математики культуры личности,
- понимания значимости математики для научно-технического прогресса,
- отношение к математике как части общечеловеческой культуры через знакомство с историей развития математики, эволюцией математических идей;
- развитие навыков вычислений с натуральными числами;
- освоение навыков действий с десятичными дробями;
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
- выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики;
- подготовка обучающихся к изучению систематических курсов алгебры и геометрии.
Общая характеристика учебного предмета
Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.
Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.
Геометрия— один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Курс математики 5 класса строится на индуктивной основе с привлечением дедуктивных рассуждений. Теоретический материал курса излагается на наглядно-интуитивном уровне, математические методы и законы формулируются в виде правил.
В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками действий с обыкновенными и десятичными дробями, получают начальные представления об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур и измерения геометрических величин.
Место предмета в учебном плане МАОУ Сладковского района Усовская средняя общеобразовательная школа
Согласно Федеральному базисному учебному плану на изучение математики в 5 классе отводится не менее 170 часов из расчета 5 ч в неделю.
Учебный план МАОУ Усовская средняя общеобразовательная школа отводит на изучение математики в 5-ом классе 5 часов в неделю, в год 170 часов.
Количество учебных часов:
В год -170 часов (5 часов в неделю, всего 170 часов)
В том числе:
Контрольных работ-14, включая итоговую контрольную работу.
Формы промежуточной и итоговой аттестации:
Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных, работ. Итоговая аттестация предусмотрена в виде административной контрольной работы.
Уровень обучения – базовый.
Отличительные особенности рабочей программы по сравнению с примерной:
В программу внесены изменения: уменьшено или увеличено количество часов на изучение некоторых тем. Сравнительная таблица приведена ниже.
Раздел | Количество часов в примерной программе | Количество часов в рабочей программе |
1. Натуральные числа и шкалы | 15 | 15 |
2. Сложение и вычитание натуральных чисел | 21 | 21 |
3. Умножение и деление натуральных чисел | 27 | 27 |
4. Площади и объемы | 12 | 12 |
5. Обыкновенные дроби | 23 | 23 |
6.Десятичные дроби. Сложение и вычитание десятичных дробей | 13 | 13 |
7.Умножение и деление десятичных дробей | 26 | 26 |
8.Инструменты для вычислений и измерений | 17 | 17 |
9. Повторение. Решение задач | 16 | 16 |
Итого | 170 | 170 |
Внесение данных изменений позволит охватить весь изучаемый материал по программе, повысить уровень обученности учащихся по предмету, а также более эффективно осуществить индивидуальный подход к обучающимся.
Срок реализации рабочей учебной программы – один учебный год.
В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.
Учебно-методический комплекс учителя:
- Математика 5. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. - Мнемозина, 2004-2009.
- Дидактические материалы по математике для 5 кл. Чесноков А.С. и др. - Просвещение, 1994 и последующие года изданий.
- Контрольные работы. 5, 6 кл. Дудницын Ю.П., Кронгауз В.П. - НПО Образование, 1998.
- Жохов В.И. Преподавание математики в 5-6 кл. - Русское слово, 1998и последующие года изданий.
- Фридман Л.М. Изучаем математику. 5-6 кл. - Просвещение, 1995.
- Жохов В.И., Преподавание математики в 5 и 6 классах.- М. Мнемозина, 2004-2007.
- Концепция математического образования (проект)//Математика в школе.- 2000. – № 2. – с.13-18
- Стандарт основного общего образования по математике//«Вестникобразования» -2004 - № 12 - с.107-119.
Электронные учебные пособия – Интернет-ресурсы
- Интерактивная математика. 5-9 класс. Электронное учебное пособие для основной школы. М., ООО «Дрофа», ООО «ДОС»,, 2002.
- Поурочный планы по математике 5 – 6 класс. Волгоград, «Учитель», 2010
- Демонстрационные таблицы по математике для 5 – 6 класса. Волгоград, «Учитель», 2010
Учебно-методический комплекс ученика:
- ВиленкинН. Я., В. И. Жохов, А. С. Чесноков, С. И. ШварцбурдМатематика. 5 класс, Издательство: Мнемозина, 2005 - 2009 г.Твердый переплет, 280 стр.
- Чесноков А.С., Нешков К.И. Дидактические материалы по математике для 5 класса.-М.Просвещение, 1990-2000.
Согласно планированию предполагается изучение натуральных чисел и действий над ними, шкал, площадей и объемов, обыкновенных дробей, десятичных дробей и действий над ними, а также инструментов для вычислений и измерений.
ОСНОВНОЕ СОДЕРЖАНИЕ
1. Натуральные числа и шкалы (15 ч),
Натуральные числа и их сравнение. Геометрические фигуры: отрезок, прямая, луч, треугольник. Измерение и построение отрезков. Координатный луч.
Цель: систематизировать и обобщить сведения о натуральных числах, полученные в начальной школе; закрепить навыки построения и измерения отрезков.
Систематизация сведений о натуральных числах позволяет восстановить у обучающихся навыки чтения и записи многозначных чисел, сравнения натуральных чисел, а также навыки измерения и построения отрезков.
Рассматриваются простейшие комбинаторные задачи.
В ходе изучения темы вводятся понятия координатного луча, единичного отрезка и координаты точки. Здесь начинается формирование таких важных умений, как умения начертить координатный луч и отметить на нем заданные числа, назвать число, соответствующее данному делению на координатном луче.
2. Сложение и вычитание натуральных чисел (21 ч).
Сложение и вычитание натуральных чисел, свойства сложения. Решение текстовых задач. Числовое выражение. Буквенное выражение и его числовое значение. Решение линейных уравнений.
Цель: закрепить и развить навыки сложения и вычитания натуральных чисел.
Начиная с этой темы основное внимание уделяется закреплению алгоритмов арифметических действий над многозначными числами, так как они не только имеют самостоятельное значение, но и являются базой для формирования умений проводить вычисления с десятичными дробями.
В этой теме начинается алгебраическая подготовка: составление буквенных выражений по условию задач, решение уравнений на основе зависимости между компонентами действий (сложение и вычитание).
3. Умножение и деление натуральных чисел (27 ч).
Умножение и деление натуральных чисел, свойства умножения. Квадрат и куб числа. Решение текстовых задач.
Цель: закрепить и развить навыки арифметических действий с натуральными числами.
В этой теме проводится целенаправленное развитие и закрепление навыков умножения и деления многозначных чисел. Вводятся понятия квадрата и куба числа. Продолжается работа по формированию навыков решения уравнений на основе зависимости между компонентами действий.
Развиваются умения решать текстовые задачи, требующие понимания смысла отношений «больше на... (в...)», «меньше на... (в...)», а также задачи на известные обучающимся зависимости между величинами (скоростью, временем и расстоянием; ценой, количеством и стоимостью товара и др.). Задачи решаются арифметическим способом. При решении с помощью составления уравнений так называемых задач на части учащиеся впервые встречаются с уравнениями, в левую часть которых неизвестное входит дважды. Решению таких задач предшествуют преобразования соответствующих буквенных выражений.
4. Площади и объемы (12 ч).
Вычисления по формулам. Прямоугольник. Площадь прямоугольника. Единицы площадей.
Цель: расширить представления обучающихся об измерении геометрических величин на примере вычисления площадей и объемов и систематизировать известные им сведения о единицах измерения.
При изучении темы учащиеся встречаются с формулами. Навыки вычисления по формулам отрабатываются при решении геометрических задач. Значительное внимание уделяется формированию знаний основных единиц измерения и умению перейти от одних единиц к другим в соответствии с условием задачи.
5. Обыкновенные дроби (23 ч).
Окружность и круг. Обыкновенная дробь. Основные задачи на дроби. Сравнение обыкновенных дробей. Сложение и вычитание дробей с одинаковыми знаменателями.
Цель: познакомить обучающихся с понятием дроби в объеме, достаточном для введения десятичных дробей.
В данной теме изучаются сведения о дробных числах, необходимые для введения десятичных дробей. Среди формируемых умений основное внимание должно быть привлечено к сравнению дробей с одинаковыми знаменателями, к выделению целой части числа. С пониманием смысла дроби связаны три основные задачи на дроби, осознанного решения которых важно добиться от обучающихся.
6.Десятичные дроби. Сложение и вычитание десятичных дробей (13 ч).
Десятичная дробь. Сравнение, округление, слежение и вычитание десятичных дробей. Решение текстовых задач.
Цель: выработать умения читать, записывать, сравнивать, округлять десятичные дроби, выполнять сложение и вычитание десятичных дробей.
При введении десятичных дробей важно добиться у обучающихся четкого представления о десятичных разрядах рассматриваемых чисел, умений читать, записывать, сравнивать десятичные дроби.
Подчеркивая сходство действий над десятичными дробями с действиями над натуральными числами, отмечается, что сложение десятичных дробей подчиняется переместительному и сочетательному законам.
Определенное внимание уделяется решению текстовых задач на сложение и вычитание, данные в которых выражены десятичными дробями.
При изучении операции округления числа вводится новое понятие — «приближенное значение числа», отрабатываются навыки округления десятичных дробей до заданного десятичного разряда.
7.Умножение и деление десятичных дробей (26 ч).
Умножение и деление десятичных дробей. Среднее арифметическое нескольких чисел. Решение текстовых задач.
Цель: выработать умения умножать и делить десятичные дроби, выполнять задания на все действия с натуральными числами и десятичными дробями.
Основное внимание привлекается к алгоритмической стороне рассматриваемых вопросов. На несложных примерах отрабатывается правило постановки запятой в результате действия. Кроме того, продолжается решение текстовых задач с данными, выраженными десятичными дробями. Вводится понятие среднего арифметического нескольких чисел.
8.Инструменты для вычислений и измерений (17 ч).
Начальные сведения о вычислениях на калькуляторе. Проценты. Основные задачи на проценты. Примеры таблиц и диаграмм. Угол, треугольник. Величина (градусная мера) угла.
Единицы измерения углов. Измерение углов. Построение угла заданной величины.
Цель: сформировать умения решать простейшие задачи на проценты, выполнять измерение и построение углов.
У обучающихся важно выработать содержательное понимание смысла термина «процент». На этой основе они должны научиться решать три вида задач на проценты: находить несколько процентов от какой-либо величины; находить число, если известно несколько его процентов; находить, сколько процентов одно число составляет от другого.
Продолжается работа по распознаванию и изображению и геометрических фигур. Важно уделить внимание формированию умений проводить измерения и строить углы.
Китовые диаграммы дают представления обучающимся о наглядном изображении распределения отдельных составных частей какой-нибудь величины. В упражнениях следует широко использовать статистический материал, публикуемый в газетах и журналах.
В классе, обеспеченном калькуляторами, можно научить школьников использовать калькулятор при выполнении отдельных арифметических действий.
9. Повторение. Решение задач (16 ч).
Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс математики 5 класса.
Требования к уровню подготовки обучающихся в 5 классе
В результате изучения учебного курса "математика" в 5 классе ученик должен:
Знать: математические термины, правила действий с десятичными дробями.
Уметь: читать и записывать натуральные числа и десятичные дроби, сравнивать два числа; выполнять письменно сложение, вычитание, умножение и деление натуральных чисел и десятичных дробей; выполнять простейшие устные вычисления; определять порядок действий и находить значения числовых выражений; решать несложные текстовые задачи арифметическим способом; распознавать на рисунках и моделях геометрические фигуры, соотносить геометрические формы с формой окружающих предметов; овладевать практическими геометрическими навыками; комментировать ход решения задачи; пересказывать содержание задачи, выделяя известные данные и постановку вопроса; составлять простейшие задачи, решаемые с помощью заданного действия.
В ходе преподавания математики в 5 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали овладевалиумениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
ТРЕБОВАНИЯ К УРОВНЮПОДГОТОВКИ ВЫПУСКНИКОВ
В результате изучения математики ученик должен
знать/понимать[1]
- существо понятия математического доказательства; примеры доказательств;
- существо понятия алгоритма; примеры алгоритмов;
- как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
- смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;
Арифметика
уметь
- выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;
- переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;
- выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;
- округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;
- пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
- решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;
- устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;
- интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;
Требования к математической подготовке.
В результате изучения курса математики учащиеся должны:
- Правильно употреблять термины, связанные с различными видами чисел и способами их записи: цельное, дробное, десятичная дробь, переход от одной формы записи к другой (например, проценты в виде десятичной дроби; выделение целой части из неправильной дроби); решать три основные задачи на дроби;
- Сравнивать числа, упорядочивать наборы чисел, понимать связь отношений «больше», «меньше» с расположением точек на координатной прямой; находить среднее арифметическое нескольких чисел;
- Выполнять арифметические действия с натуральными числами и десятичными дробями; округлять десятичные дроби;
- Распознавать на чертежах и моделях геометрические фигуры (отрезки, углы, треугольники, многоугольники, окружность, круг); изображать указанные геометрические фигуры; владеть практическими навыками использования геометрических инструментов для построения и измерения отрезков и углов;
- Владеть навыками вычисления по формулам, знать основные единицы измерения и уметь перейти от одних единиц измерения к другим в соответствии с условиями задачи;
- Находить числовые значения буквенных выражений.
КРИТЕРИИ И НОРМЫ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ ОБУЧАЮЩИХСЯ ПО МАТЕМАТИКЕ.
1. Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если:
- работа выполнена полностью;
- в логических рассуждениях и обосновании решения нет пробелов и ошибок;
- в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится в следующих случаях:
- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
- допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
- допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
- допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Отметка «1» ставится, если:
- работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
2.Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик:
- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
- изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
- продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
- отвечал самостоятельно, без наводящих вопросов учителя;
- возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
- допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
- неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике);
- имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
- не раскрыто основное содержание учебного материала;
- обнаружено незнание учеником большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если:
- ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.
Общая классификация ошибок.
При оценке знаний, умений и навыков обучающихся следует учитывать все ошибки (грубые и негрубые) и недочёты.
3.1. Грубыми считаются ошибки:
- незнание определения основных понятий, законов, правил, основных положений теории, незнание формул, общепринятых символов обозначений величин, единиц их измерения;
- незнание наименований единиц измерения;
- неумение выделить в ответе главное;
- неумение применять знания, алгоритмы для решения задач;
- неумение делать выводы и обобщения;
- неумение читать и строить графики;
- неумение пользоваться первоисточниками, учебником и справочниками;
- потеря корня или сохранение постороннего корня;
- отбрасывание без объяснений одного из них;
- равнозначные им ошибки;
- вычислительные ошибки, если они не являются опиской;
- логические ошибки.
3.2. К негрубым ошибкам следует отнести:
- неточность формулировок, определений, понятий, теорий, вызванная неполнотой охвата основных признаков определяемого понятия или заменой одного - двух из этих признаков второстепенными;
- неточность графика;
- нерациональный метод решения задачи или недостаточно продуманный план ответа (нарушение логики, подмена отдельных основных вопросов второстепенными);
- нерациональные методы работы со справочной и другой литературой;
- неумение решать задачи, выполнять задания в общем виде.
3.3. Недочетами являются:
- нерациональные приемы вычислений и преобразований;
- небрежное выполнение записей, чертежей, схем, графиков.
Школьное математическое образование ставит следующие цели обучения:
- овладение конкретными математическими знаниями, необходимыми для применения в практической деятельности, для изучения смежных дисциплин, для продолжения образования;
- интеллектуальное развитие учащихся, формирование качеств мышления, характерных для математической деятельности и необходимых для повседневной жизни;
- формирование представлений об идеях и методах математики, о математике как форме описания и методе познания действительности;
- формирование представлений о математике как части общечеловеческой культуры, понимания значимости математики для общественного прогресса.
Изучение математики на ступени основного общего образования направлено на достижение следующих целей:
- овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
- интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
- формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
- воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса.
Основные развивающие и воспитательные цели
Развитие:
- Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
- Математической речи;
- Сенсорной сферы; двигательной моторики;
- Внимания; памяти;
- Навыков само и взаимопроверки.
Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.
Воспитание:
- Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
- Волевых качеств;
- Коммуникабельности;
- Ответственности.
ОБЯЗАТЕЛЬНЫЙ МИНИМУМ СОДЕРЖАНИЯ ОСНОВНЫХ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ
АРИФМЕТИКА
Натуральные числа. Десятичная система счисления. Римская нумерация. Арифметические действия над натуральными числами. Степень с натуральным показателем.
Делимость натуральных чисел. Признаки делимости на 2, 3, 5, 9, 10. Простые и составные числа. Разложение натурального числа на простые множители. Наибольший общий делитель и наименьшее общее кратное. Деление с остатком.
Дроби. Обыкновенная дробь. Основное свойство дроби. Сравнение дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части.
Десятичная дробь. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.
Рациональные числа.
Числовые выражения, порядок действий в них, использование скобок. Законы арифметических действий: переместительный, сочетательный, распределительный.
Действительные числа.
Этапы развития представления о числе.
Текстовые задачи. Решение текстовых задач арифметическим способом.
Измерения, приближения, оценки. Единицы измерения длины, площади, объема, массы, времени, скорости. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире.
Представление зависимости между величинами в виде формул.
Проценты. Нахождение процента от величины, величины по ее проценту.
Отношение, выражение отношения в процентах. Пропорция. Пропорциональная и обратно пропорциональная зависимости.
Округление чисел. Прикидка и оценка результатов вычислений. Выделение множителя – степени десяти в записи числа.
В рабочей программе кроме содержания математического образования, требований к обязательному и возможному уровню подготовки обучающегося, виды контроля представлено также компьютерное обеспечение урока.
Компьютер нашел свое место в каждой школе. Материально-техническая сторона компьютерной базы школ непрерывно улучшается. Все большее число учащихся осваивают первоначальные навыки пользователя компьютером. Однако в настоящее время недостаточное внимание уделяется разработке методик применения современных информационных технологий, компьютерных и мультимедийных продуктов в учебный процесс и вооружению частными приемами этой методики преподавателей каждого предметного профиля для каждодневной работы с учащимися. Цель создания данной рабочей программы – внедрение компьютерных технологий в учебный процесс преподавания математики в 5 классе.
Программы составлены на основе обязательного минимума содержательной области образования «Математика», а также на основе федерального компонента государственного Стандарта основного общего образования по математике. Система уроков условна, но все же выделяются следующие виды:
Урок-лекция. Предполагаются совместные усилия учителя и учеников для решения общей проблемной познавательной задачи. На таком уроке используется демонстрационный материал на компьютере, разработанный учителем или учениками, мультимедийные продукты.
Урок-практикум. На уроке учащиеся работают над различными заданиями в зависимости от своей подготовленности. Виды работ могут быть самыми разными: письменные исследования, решение различных задач, практическое применение различных методов решения задач. Компьютер на таких уроках используется как электронный калькулятор, тренажер устного счета, виртуальная лаборатория, источник справочной информации.
Комбинированный урок предполагает выполнение работ и заданий разного вида. Урок–игра. На основе игровой деятельности учащиеся познают новое, закрепляют изученное, отрабатывают различные учебные навыки.
Урок решения задач. Вырабатываются у учащихся умения и навыки решения задач на уровне обязательной и возможной подготовке. Любой учащийся может использовать компьютерную информационную базу по методам решения различных задач, по свойствам элементарных функций и т.д.
Урок-тест.Тестирование проводится с целью диагностики пробелов знаний, контроля уровня обученности учащихся, тренировки технике тестирования. Тесты предлагаются как в печатном так и в компьютерном варианте, причем в компьютерном варианте всегда с ограничением времени.
Урок - самостоятельная работа. Предлагаются разные виды самостоятельных работ.
Урок - контрольная работа. Контроль знаний по пройденной теме
Тип урока | Форма контроля | ||
УОНМ | Урок ознакомления с новым материалом | УС | Устный счёт |
УЗИ | Урок закрепления изученного | УО | Устный опрос |
УПЗУ | Урок применения знаний и умений | ФО | Фронтальный опрос |
УОСЗ | Урок обобщения и систематизации знаний | СР | Самостоятельная работа |
УПКЗУ | Урок проверки и коррекции знаний и умений | ИЗ | Индивидуальное задание |
КУ | Комбинированный урок | МТ | Математический тест |
УКЗ | Урок коррекции знаний | МД | Математический диктант |
|
| ПР | Практическая работа |
|
| КР | Контрольная работа |
Компьютерное обеспечение уроков
В разделе рабочей программы «Компьютерное обеспечение» спланировано применение имеющихся компьютерных продуктов: демонстрационный материал, задания для устного опроса учащихся, тренировочные упражнения, а также различные электронные учебники.
Демонстрационный материал (слайды).(ДМ)
Создается с целью обеспечения наглядности при изучении нового материала, использования при ответах учащихся. Применение анимации при создании такого компьютерного продукта позволяет рассматривать вопросы математической теории в движении, обеспечивает другой подход к изучению нового материала, вызывает повышенное внимание и интерес у учащихся.
При решении любых задач использование графической интерпретации условия задачи, ее решения позволяет учащимся понять математическую идею решения, более глубоко осмыслить теоретический материал по данной теме.
Задания для устного счета.(УС)
Эти задания дают возможность в устном варианте отрабатывать различные вопросы теории и практики, применяя принципы наглядности, доступности. Их можно использовать на любом уроке в режиме учитель – ученик, взаимопроверки, а также в виде тренировочных занятий.
Тренировочные упражнения.(ТУ)
Включают в себя задания с вопросами и наглядными ответами, составленными с помощью анимации. Они позволяют ученику самостоятельно отрабатывать различные вопросы математической теории и практики.
Электронные учебники.(ЭУ)
Они используются в качестве виртуальных лабораторий при проведении практических занятий, уроков введения новых знаний. В них заключен большой теоретический материал, много тренажеров, практических и исследовательских заданий, справочного материала.На любом из уроков возможно использование компьютерных устных упражнений, применение тренажера устного счета, что активизирует мыслительную деятельность учащихся, развивает вычислительные навыки, так как позволяет осуществить иной подход к изучаемой теме.
Использование компьютерных технологий в преподавании математики позволяет непрерывно менять формы работы на уроке, постоянно чередовать устные и письменные упражнения, осуществлять разные подходы к решению математических задач, а это постоянно создает и поддерживает интеллектуальное напряжение учащихся, формирует у них устойчивый интерес к изучению данного предмета
Календарно – тематическое планирование уроков математики 5 класс. | |||
№ п/п | Тема | Часов | Контрольных работ |
1 | § 1. Натуральные числа и шкалы. | 15 часов. | №1 входной контроль |
2 | § 2. Сложение и вычитание натуральных чисел. | 21 час | № 2 № 3 |
3. | § 3. Умножение и деление натуральных чисел. | 27 часов. | За I четверть № 4 № 5 |
4. | § 4. Площади и объёмы. | 12 часов. | № 6 За II четверть |
5. | § 5. Обыкновенные дроби. | 23 часа | № 7 № 8 |
6. | § 6. Десятичные дроби. Сложение и вычитание десятичных дробей. | 13 часов | №9 |
7. | § 7. Умножение и деление десятичных дробей. | 26 часов | № 10 За III четверть № 11 |
8. | § 8. Инструменты для вычислений и измерений. | 17 часов | № 12 № 13 |
9. | § 9. Итоговое повторение курса математики. | 16 часов | № 14 |
[1] Помимо указанных в данном разделе знаний, в требования к уровню подготовки включаются также знания, необходимые для освоения перечисленных ниже умений.
По теме: методические разработки, презентации и конспекты
Рабочая программа по математике в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по математики 5-9 классы. Математика 5 класс: И.И.Зубарева, А.
Рабочая программа разработана на один учебный год: в основу программы положены педагогические и дидактические принципы (личностно ориентированные; культурно ориентированные; деятельно...
Рабочая программа по математике класс (автор Виленкин Н.Я.))
Рабочая проргамма содержит пояснительную записку, календарно-тематическое планирование, требования к подготовке учащихся...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
РАБОЧАЯ ПРОГРАММА по математике для 5-х классов Разработана на основе примерной рабочей программы ( автор – составитель О.С. Кузнецова ) учителем математики ГБОУ школы № 645 Старковской С.Н
Настоящая рабочая программа разработана в соответствии с основными положениями федерального государственного образовательного стандарта основного общего образования по математике....
Рабочая программа по Математике 5 класса (Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под ред. В.В.Воронковой и учебника «Математика» М.Н. Перова, Г.М. Капустина)
Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под редакцией доктора педагогических наук В.В.Воронковой Сб.1. –М.:...
РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М.
РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М...