Рабочая программа по математике 9 класс
рабочая программа по алгебре (9 класс) по теме
Рабочая программа по математике 9 класс
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma_9_klass.doc | 386.5 КБ |
Предварительный просмотр:
«Согласовано» Руководитель МО ___________ Иващенко О.И. Протокол №__________ от «____»__________2012. | «Согласовано» Зам директора по УВР ___________ Бойкова Н.П. от «___»__________2012г. | «Утверждаю» Директор МОУ-СОШ №3 _________ Володина Н.А. Приказ № ________ от «____»_________2012г. |
РАБОЧАЯ ПРОГРАММА ПЕДАГОГА
Евлановой Нины Григорьевны,
учителя первой категории,
Ф.И.О., категория
по математике, 9Б класс
Предмет, класс
УМК: алгебра – А.Г. Мордкович
геометрия – А.В.Погорелов
2012-2013 учебный год
1. Пояснительная записка
Курс математики в 9 классе складывается из следующих содержательных компонентов: арифметика (на уроках повторения и обобщения); алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.
Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.
Алгебра нацелена на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира. Одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у учащихся представлений о роли математики в развитии цивилизации и культуры.
Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.
Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
Таким образом, в ходе освоения содержания курса учащиеся получают возможность:
развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;
развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
Школьное образование в современных условиях призвано обеспечить функциональную грамотность и социальную адаптацию обучающихся на основе приобретения ими компетентностного опыта в сфере учения, познания, профессионально-трудового выбора, личностного развития, ценностных ориентаций и смыслотворчества. Это предопределяет направленность целей обучения на формирование компетентной личности, способной к жизнедеятельности и самоопределению в информационном обществе, ясно представляющей свои потенциальные возможности, ресурсы и способы реализации выбранного жизненного пути.
Данная рабочая программа ориентирована на учащихся 9 классов и реализуется на
основе следующих документов:
1. Программа для общеобразовательных школ, гимназий, лицеев: Сборник “Программы для общеобразовательных школ, гимназий, лицеев: Математика. 5-11 кл.”/ Сост. Г.М.Кузнецова, Н.Г. Миндюк. – 3-е изд., стереотип.- М. Дрофа, 2002; 4-е изд. – 2004г.
2. Стандарт основного общего образования по математике.
Стандарт основного общего образования по математике //Математика в школе. – 2004г,-№4, -с.4
Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса.
С учетом возрастных особенностей каждого класса выстроена система учебных занятий, спроектированы цели, задачи, продуманы возможные формы контроля, сформулированы ожидаемые результаты обучения.
Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации в 9 классе на изучение математики отводится 5 часов в неделю или 170 часов в год, при этом реализуется типовая программа «Алгебра 7-9 класс» для общеобразовательных учреждений авт. А.Г. Мордкович, П.В Семенов в объеме 102 часов и на изучение геометрии отводится 68 часов в год ( «Геометрия7-9 для общеобразовательных учреждений авт. А.В. Погорелов).
Цели курса:
овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе, свойственных математической деятельности: ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
воспитание культуры личности, отношения к математике как к части общечеловеческой культуры, играющей особую роль в общественном развитии.
развитие представлений о полной картине мира, о взаимосвязи математики с другими предметами
Задачи курса:
развить представления о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;
изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;
развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;
развить логическое мышление и речь — умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;
сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.
закончить изучение свойств геометрических фигур на плоскости;
подготовка к изучению курса стереометрии в старших классах;
подготовка к сдаче ГИА.
3.Учебно - тематическое планирование по математике
Классы: 9 «А»
Количество часов: всего 170 час; в неделю 5 час.
Плановых контрольных уроков 12, зачетов 4, тестов 10 ч.;
Административных контрольных срезов 3 ч.
Планирование составлено на основе федерального компонента
государственного Стандарта среднего (полного) общего образования по математике.
Сокращения, используемые в рабочей программе:
УОНМ — урок ознакомления с новым материалом.
УЗИМ — урок закрепления изученного материала.
УПЗУ — урок применения знаний и умений.
УОСЗ — урок обобщения и систематизации знаний.
СР — самостоятельная работа.
МД- математический диктант.
Т – тестовая работа.
ЭОР- электронные образовательные ресурсы
КИЗ-карточки для индивидуальных заданий
4.Содержание изучаемого курса математики
1.Рациональные неравенства и их системы (13ч)
Основная цель:
– формирование представлений о частном и общем решении рациональных неравенств и их систем, о неравенствах с модулями, о равносильности неравенств;
– овладение умением совершать равносильные преобразования, решать неравенства методом интервалов;
– расширение и обобщение сведений о рациональных неравенствах и способах их решения: метод интервалов, метод замены переменной.
Линейное и квадратное неравенство с одной переменной, частное и общее решение, равносильность, равносильные преобразования, метод интервалов. Рациональные неравенства с одной переменной, метод интервалов, кривая знаков, нестрогие и строгие неравенства. Множества, операции над множествами. Системы линейных неравенств, частное и общее решение системы неравенств, пересечение и объединение множеств.
Контрольных работ-1
2. Системы уравнений (15ч)
Основная цель:
– формирование представлений о системе двух рациональных уравнений с двумя переменными, о рациональном уравнении с двумя переменными;
– овладение умением совершать равносильные преобразования, решать уравнения и системы уравнений с двумя переменными;
– отработка навыков решения уравнения и системы уравнений различными методами: графическим, подстановкой, алгебраического сложения, введения новых переменных.
Рациональное уравнение с двумя переменными, решение уравнения с двумя переменными, равносильные преобразования, график уравнения, система уравнений, решение системы уравнений. Метод подстановки, метод алгебраического сложения, метод введения новых переменных, равносильные системы уравнений, алгоритм метода подстановки. Составление математической модели, система двух нелинейных уравнений, работа с составленной моделью, применение всех методов решения системы уравнений.
Контрольных работ-1
3. Числовые функции (23ч).
Основная цель:
– формирование представлений о таких фундаментальных понятиях математики, какими являются понятия функции, её области определения, области значения; о различных способах задания функции: аналитическом, графическом, табличном, словесном;
– овладение умением применения четности или нечетности, ограниченности, непрерывности, монотонности функций;
– формирование умений находить наибольшее и наименьшее значение на заданном промежутке, решая практические задачи;
– формирование понимания того, как свойства функций отражаются на поведении графиков функций.
Функция, независимая и зависимая переменная, область определения и множество значений функции, кусочно-заданная функция. Способы задания функции, график функции, аналитический, графический, табличный, словесный. Возрастающая и убывающая на множестве, монотонная функция, исследование на монотонность, ограниченная снизу и сверху на множестве, ограниченная функция, наименьшее наибольшее значение на множестве, непрерывная функция, выпуклая вверх или вниз, элементарные функции. Четная функция, нечетная функция, симметричное множество, алгоритм исследования функции на четность, график нечетной функции, график четной функции. Степенная функция с натуральным показателем, свойства степенной функции с натуральным показателем, график степенной функции с четным показателем, график степенной функции с нечетным показателем, кубическая парабола, решение уравнений графически. Степенная функция с отрицательным целым показателем, свойства степенной функции с отрицательным целым показателем, график степенной функции с четным отрицательным целым показателем, график степенной функции с нечетным отрицательным целым показателем, решение уравнений графически.
Контрольных работ-2
4.Прогрессии (17 ч)
Основная цель:
– формирование преставлений о понятии числовой последовательности, арифметической и геометрической прогрессиях как частных случаях числовых последовательностей; о трех способах задания последовательности: аналитическом, словесном и рекуррентном;
– сформировать и обосновать ряд свойств арифметической и геометрической прогрессий, свести их в одну таблицу;
– овладение умением решать текстовые задачи, используя свойства арифметической и геометрической прогрессии.
Числовая последовательность, способы задания, аналитическое задание, словесное задание, рекуррентное задание, свойства числовых последовательностей, монотонная последовательность, возрастающая последовательность, убывающая последовательность. Арифметическая прогрессия, разность, возрастающая прогрессия, конечная прогрессия, формула n-го члена арифметической прогрессии, формула суммы членов арифметической прогрессии, среднее арифметическое, характеристическое свойство арифметической прогрессии. Геометрическая прогрессия, знаменатель прогрессии, возрастающая прогрессия, конечная прогрессия, формула n-го члена геометрической прогрессии, показательная функция, формула суммы членов конечной геометрической прогрессии, характеристическое свойство геометрической прогрессии.
Контрольных работ-1
5.Элементы комбинаторики, статистики и теории вероятностей (16ч)
Всевозможные комбинации, комбинаторные задачи, дерево возможных вариантов, правило умножения.
Треугольник Паскаля, события достоверные, невозможные, случайные; классическая вероятностная схема, классическое определение вероятности.
Вариант, многоугольник распределения данных, кривая нормального распределения.
Схеме Бернулли и функции ψ(x) и φ(х).
Контрольных работ-1
6.Подобие фигур. (17ч.)
Понятие о гомотетии и подобии фигур. Подобие треугольников. Признаки подобия треугольников. Подобие прямоугольных треугольников. Центральные и вписанные углы и их свойства.
Основная цель: усвоить признаки подобия треугольников и отработать навыки их применения.
Изучением признаков подобия треугольников фактически заканчивается изучение главнейших вопросов курса геометрии: признаки равенства треугольников, сумма углов треугольника, теорема Пифагора. Свойства подобных треугольников будут многократно применяться в дальнейших главах курса. Поэтому следует уделить значительное внимание и время решению задач, направленных на формирование умений доказывать подобие треугольников с использованием соответствующих признаков и вычислять элементы подобных треугольников.
Рассматриваются углы, вписанные в окружность.
Контрольных работ-1
7.Решение треугольников. (15ч.)
Теоремы синусов и косинусов. Решение треугольников.
Основная цель: познакомить учащихся с основными алгоритмами решения произвольных треугольников.
В процессе изучения темы знания о признаках равенства треугольников, о построении треугольника по трем элементам дополняются сведениями о методах вычисления всех элементов треугольника, если заданы три его определенных элемента. Среди задач на решение треугольников основными являются три, соответствующие признакам равенства треугольников: решение треугольника по двум сторонам и углу между ними, по стороне и двум углам, по трем сторонам. Усвоение основных алгоритмов решения произвольных треугольников происходит в ходе решения задач с числовыми данными.
Контрольных работ-1
8.Многоугольники. (15ч.)
Ломаная. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники. Окружность, вписанная в правильный многоугольник. Окружность, описанная около правильного многоугольника. Длина окружности. Длина дуги окружности. Радианная мера угла.
Основная цель: расширить и систематизировать сведения о многоугольниках и окружностях.
Особое внимание уделяется изучению частных видов многоугольников: правильному треугольнику, квадрату, правильному шестиугольнику.
Контрольных работ-1
9.Площади фигур. (15ч.)
Площадь и ее свойства. Площади прямоугольника, треугольника, параллелограмма, трапеции. Площади круга и его частей.
Основная цель: сформировать общее представление о площади и умение вычислять площади фигур.
Основное внимание уделяется формированию практических навыков вычисления площадей плоских фигур в ходе решения соответствующих задач.
Контрольных работ-1
10.Повторение курса (24ч.)
5. Требования к уровню математической подготовки учащихся
В результате изучения курса ученик должен
знать/понимать:
существо понятия математического доказательства; приводить примеры доказательств;
существо понятия алгоритма; приводить примеры алгоритмов;
каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации.
уметь:
пользоваться геометрическим языком для описания предметов окружающего мира;
распознавать геометрические фигуры, различать их взаимное расположение;
изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
вычислять значения геометрических величин (длин, углов, площадей, объемов); в том числе определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур,составленных из них;
решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
решать простейшие планиметрические задачи в пространстве;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- описания реальных ситуаций на языке геометрии;
- расчетов, включающих простейшие тригонометрические формулы;
- решения геометрических задач с использованием тригонометрии;
- решения практических задач, связанных с нахождением геометрических величин
( используя при необходимости справочники и технические средства );
- построение геометрическими инструментами ( линейка, угольник, циркуль, транспортир).
6.Перечень учебно-методических средств обучения:
1.А.Г. Мордкович Алгебра 9 класс: Учебник для общеобразовательных учреждений – М.: Мнемозина, 2010;
2. А.Г. Мордкович, П.В Семенов. Алгебра 9 класс. Задачник для общеобразовательных учреждений – М.: Мнемозина, 2010;
3. А. В. Погорелов Геометрия. 7 - 9 классы : учебник для общеобразовательных учреждений— М. : Просвещение, 2009
4. В.А.Гусев, А.И.Медяник Дидактические материалы по геометрии для 9 класса общеобразовательных учреждений / В. А. Гусев, А.И. Медяник. — М.: Просвещение, 2004.
5. Ю.П. Дудницын Рабочие тетради / Ю.П.Дудницын. — М., 2009.. Мищенко Т.М.. Тематические тесты. 9 класс / Т.М. Мищенко. — М.:Просвещение, 2010.
6. Л.А. Александрова Алгебра 9 класс: Самостоятельные работы для общеобразовательных учреждений. – М.: Мнемозина, 2009;
7. А.Г. Мордкович, Е.Е Тульчинская Алгебра: Тесты для 7 – 9 классов общеобразовательных учреждений. – М.: Мнемозина, 2004;
8. Ю.П. Дудницын, Е.Е. Тульчинская Алгебра. 9 класс. Контрольные работы для общеобразовательных учреждений. – М.: Мнемозина, 2007.
7. Список литературы
Литература для учителя.
В. И. Жохов, КарташоваТ.Г., Крайнева Л.Б. Геометрия. Поурочные разработки. 7 – 9 классы. Книга для учителя — М., 2010.
Александрова Л.А. Алгебра-9. Самостоятельные работы. Л.А.Александрова, Мнемозина. 2010.
Алтухова Е.В. и др. Математика. В помощь преподавателю. Уроки учительского мастерства.5-11 классы. Алтухова Е.В.Учитель.Волгоград.2009—304.
Алтынов П.И.Тесты. Алгебра7-9 классы. Учебно-методическое пособие. Дрофа. Москва.2001.—112.
Алтынов П.И.Тесты. Геометрия 7-9 классы. Учебно-методическое пособие. Дрофа. Москва.2001.—112.
Дудницын Ю.П., Тульчинская Ю.П. Алгебра-9. Контрольные работы. Мнемозина.2010.
Ершова А.П. и др.Математика. Самостоятельные и контрольные работы Алгебра.Геометрия.9 класс. Разноуровневые дидактические материалы. Илекса. Москва. 2002—144.
Жохов В.И.Карточки для проведения контрольных работ и зачётов. Геометрия 9.Вербум-М. Москва.2000
Зубарева И.И.Мордкович А.Г.Программы.Мнемозина.Москва.2007.-64.
Королькова Г.В.Геометрия для учащихся 9 класса (ответы на билеты). Учитель. Волгоград.1998.—64.
Кочетова Л.Ф. идр. Геометрия 7-9 классы. Развёрнутое тематическое планирование по программе А.В.Погорелова» .Учитель. Волгоград.20010—92.
Мордкович А.Г., Тульчинский Е.Е. Алгебра. Тесты 7-9. Мнемозина.2010.
12. Погорелов А.В.Геометрия в 7-9 классах. Преподавание курса геометрии по учебнику «Геометрия: учебник для 7-9 классов общеобразовательных учреждений/ А.В. Погорелов.-М.:Просвещение»
Рабинович Е.М.Математика. Задачи и упражнения на готовых чертежах. Геометрия. 7-9 классы. Илекса. Гимназия. Москва-Харьков. 1998.—64
Литература для учащихся.
Блинков А.Д., Мищенко Т.М. Сборник заданий для проведения экзамена в 9 классе. Геометрия. Москва. Просвещение. 2008.—96.
Кузнецова Л.В. и др. Сборник заданий для подготовки к итоговой аттестации в 9 классе. Алгебра . Москва. Просвещение. 2006.2007,2008,2009—192.
ФИПИ. ГИА-2011.Экзамен в новой форме. Алгебра.9 класс. Тренировочные варианты экзаменационных работ для проведения государственной итоговой аттестации в новой форме. АСТ.Астрель.Москва.2010—64.
Интернет ресурсы.
http://www.uic.ssu.samara.ru/~nauka/
http://www.uztest.ru/
Критерии оценивания знаний, умений и навыков
обучающихся по математике
.
(Согласно Методическому письму «Направления работы учителей математики по исполнению единых требований преподавания предмета на современном этапе развития школы»)
Для оценки достижений учащихся применяется пятибалльная система оценивания.
Нормы оценки:
Оценка письменных контрольных работ обучающихся по математике.
Ответ оценивается отметкой «5», если:
1) работа выполнена полностью;
2) в логических рассуждениях и обосновании решения нет пробелов и ошибок;
3) в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).
Отметка «4» ставится, если:
1) работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
2)допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
1) допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
1) допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Отметка «1» ставится, если:
1)работа показала полное отсутствие у обучающегося обязательных знаний и умений по проверяемой теме или значительная часть работы выполнена не самостоятельно.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
Оценка устных ответов обучающихся по математике
Ответ оценивается отметкой «5», если ученик:
полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
отвечал самостоятельно, без наводящих вопросов учителя;
возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке учащихся» в настоящей программе по математике);
имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
не раскрыто основное содержание учебного материала;
обнаружено незнание учеником большей или наиболее важной части учебного материала;
допущены ошибки в определении понятий, при использовании математической терминуологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
Отметка «1» ставится, если:
ученик обнаружил полное незнание и непонимание изучаемого учебного материала или не смог ответить ни на один из поставленных вопросов по изученному материалу.
Календарно-тематическое планирование по математике.
№ урока | пункт | Содержание учебного материала | Дата проведения | Практическая, самостоятельная работа уч-ся | Использование ИКТ | Проектная, исследовательская и творческая деятельность учащихся |
алгебра | геометрия | План | Факт |
1 | §1 | Неравенства и сис темы неравенств/16 Линейные и квадрат ные неравенства |
|
| Лекция с элементами практики |
|
2 | П.100 | Подобие фигур17 Преобразование подобия. |
3 | §1 | Квадратные неравенства | Тренировочный практикум |
4 | П.101 | Свойства преобразования подобия. |
5 | §1 | Метод интервалов для решения квадрат ных неравенств |
| СР |
|
6 | §2 | Рациональные неравенства | . |
7 | П.102,103 | Подобие фигур. Признак подобия треугольников по двум углам. | . |
8 | §2 | Рациональные неравенства. |
9 | П.103 | Применение признака подобия треугольников по двум углам при решении задач. | . | КИЗ |
10 | §2 | Рациональные неравенства. Входной контроль |
|
11 | §2 | Рациональные неравенства. | КИЗ |
12 | П.104 | Признак подобия треугольников по двум сторонам и углу между ними |
13 | §2 | Рациональные неравенства |
14 | П.104 | Применение второ го признака подо бия треугольников. | СР |
15 | §3 | Множества и операции над ними. | МД |
16 | §3 | Множества и операции над ними. Понятие множества. Подмножество | ЭОР |
17 | П.105 | Признак подобия треугольников по трём сторонам. |
18 | §3 | Множества и опера ции над ними. Пере сечение и объедине ние множеств | Т |
19 | П.105 | Применение признака подобия треугольников по трём сторонам. | КИЗ |
20 | §4 | Системы рациональ ных неравенств | . МД |
21 | §4 | Системы рациональ ных неравенств | КИЗ |
22 | П.106 | Подобие прямоугольных треугольников. |
23 | §4 | Системы рациональ ных неравенств | УОНМ | «Что такое система неравенств?» |
24 | П.106 | Решение задач на применение признака подобия прямоугольных треугольников. | СР |
25 | §4 | Системы рациональ ных неравенств | Т |
26 | Контрольная работа №1 А (1) по теме «Неравенства и системы неравенств» | КР |
27 | П.100-106 | Применение признаков подобия треугольников в решении задач |
28 | §5.1 | Системы уравнений/ 15ч Основные понятия Рациональные уравнения с двумя переменными. РНО. |
|
29 | П.107 | Углы, вписанные в окружность |
30 | §5.2, §5.3 | Основные понятия. График уравнения с двумя переменными. Формула расстояния между двумя точ-ми. | ЭОР |
31 | §5.4 | Основные понятия. Системы уравнений с двумя переменными. | .
| КИЗ |
32 | П.108 | Пропорциональность отрезков хорд и секущих окружности | . | . |
33 | §5.5 | Основные понятия. Неравенства и системы неравенств с двумя переменными. |
| . |
|
34 | П.108 | Применение пропорциональности отрезков хорд и секущих окружности | СР |
|
35 | §6.1,§6.2 | Методы решения систем уравнений. | КИЗ |
36 | §6.3 | Методы решения систем уравнений. Метод введения новых переменных. |
| СР |
|
37 | П.108 |
| Применение теоремы об угле, вписанном в окружность | КИЗ |
38 | §6.3 | Методы решения систем уравнений. Метод введения новых переменных. |
|
|
39 | Контрольная работа №2 Г(1) по теме «Подобие фигур» | . | КР |
40 | §6 | Методы решения систем уравнений. |
| СР |
41 | §6 | Методы решения систем уравнений. |
42 | П.109 |
| РНО. Решение треугольников/ 11 Теорема косинусов |
43 | §7 | Системы уравнений как математические модели реальных ситуаций. |
| Т |
44 | П.109 | Применение теоремы косинусов в решении задач |
|
|
45 | §7 | Системы уравнений как математические модели реальных ситуаций. |
| МД |
46 | §7 | Системы уравнений как математические модели реальных ситуаций. |
| КИЗ |
47 | П.110 | 2четв | Теорема синусов |
48 | §7 | Системы уравнений как математические модели реальных ситуаций. | СР |
49 | П.110 | Применение теоремы синусов в решении задач |
50 | §7 | Системы уравнений как математические модели реальных ситуаций. |
|
51 | Контрольная работа №3 А (2) по теме «Системы ур-ний» |
| КР |
52 | П.111 |
| Соотношение между углами треугольника и противолежащими сторонами | СР |
53 | §8 | Числовые ф-ции 25 Определение числов ой функции. Область определения, область значений функции. | ЭОР |
54 | П.109-111 | Решение треугольников |
55 | §8 | Определение числов ой функции. Область определения, область значений функции. |
| МД |
56 | §8 | Определение числов ой функции. Область определения, область значений функции. |
|
| Т |
57 | П.112 |
| Упражнения в решении треуг-ков |
58 | §8 | Определение числов ой функции. Область определения, область значений функции. | СР |
59 | П.109-112 | Промежуточный контроль знаний | СР |
|
60 | §9 | Способы задания функций |
|
61 | §9 | Способы задания функций |
| СР |
62 | П.112 |
| Работа с таблицей Брадиса | КИЗ |
63 | §10.1 | Свойства функций |
64 | П.109-112 | Урок-зачет (теоретический) | КИЗ |
65 | §10.2,10.3 | Свойства функций |
|
66 | §10.4, 10.5 | Свойства функций |
| Т |
67 |
| Контрольная работа №4 Г(2) по теме «Решение треугольников» |
| КР |
|
68 | §10.6 | Свойства функций | . |
69 | П.113 |
| Многоугольники /13 ч Ломаная. РНО. |
70 | §11 | Четные и нечетные функции |
| СР |
71 | §11 | Четные и нечетные функции |
|
72 | П.114 | Выпуклые многоугольники |
73 | §11 | Четные и нечетные функции | СР |
74 | П.115 |
| Правильные многоугольники | . |
75 | Контрольная работа № 5 А (3) по теме «Числовые функции» |
| КР |
76 | §12 | РНО. Функции y=xⁿ (n€N), их свойства и графики |
| ЭОР |
77 | П.116 | Формулы для радиуса вписанных и описанных окружностей правильных многоугольников |
78 | §12 | Фун-ции y=xⁿ (n€N), их свойства и графики | КИЗ |
79 | П.116 |
| Нахождение ради усов вписанных и описанных окруж ностей правильных многоугольников |
80 | §12 | Функции y=xⁿ (n€N), их свойства и графики |
|
81 | §12 | Функции y=xⁿ (n€N), их свойства и графики |
| СР |
82 | П.116 | Решение задач на применение фор-л | КИЗ |
83 | §13 | Функции y=x-ⁿ (n€N), их свойства и графики | ЭОР |
84 | П.117 3четв |
| Решение задач на применение фор-л | СР |
85 | §13 | Функции y=x-ⁿ (n€N), их свойства и графики |
| МД |
86 | §13 | Функции y=x-ⁿ (n€N), их свойства и графики |
| . |
87 | П.118 | Подобие правиль ных выпуклых многоугольников |
|
88 | §14 | Функция у=³√х , её свойства и график. |
| ЭОР |
89 | П.119 |
| Длина окружности |
90 | §14 | Функция у=³√х , её свойства и график. | МД |
91 | §14 | Функция у=³√х , её свойства и график. |
|
92 | П.116 | Радианная мера угла |
93 | Контрольная работа № 6 А (4) по теме «Числовые функции» |
| КР |
94 | П.120 |
| Нахождение ради анной меры угла | СР |
95 | §15 | Прогрессии/16ч Числовые последовательности. |
96 | §15 | Числовые последовательности. |
|
97 | П.113-120 | Урок-зачет (теоретический) |
98 | §15 | Числовые последовательности. |
|
99 |
| Контрольная работа №7 Г(3) по теме «Многоугольники» | СР |
100 | §15 | Числовые последовательности. |
101 | §16 | Арифметическая прогрессия. |
| Т |
102 | П.121 |
| РНО. Площади фигур /12 ч Понятие площади |
103 | §16 | Арифметическая прогрессия. |
| КИЗ |
104 | П.122 |
| Площадь прямоугольника |
|
105 | §16 | Арифметическая прогрессия. | СР |
106 | §16 | Арифметическая прогрессия. |
107 | П.123 | Площадь параллелограмма | СР |
108 | §16 | Арифметическая прогрессия. |
| СР |
109 | П.124 | Площадь треугольника |
110 | §17 | Геометрическая прогрессия. |
111 | §17 | Геометрическая прогрессия. |
112 | П.125 | Нахождение площа ди треугольника |
113 | §17 | Геометрическая прогрессия. |
| КИЗ |
114 | П.126 | Площадь трапеции | СР |
115 | §17 | Геометрическая прогрессия. | СР |
116 | §17 | Геометрическая прогрессия. |
117 | П.127 | Формулы для ради усов вписанной и описанной окруж ностей треугольни-ка |
|
118 | §17 | Геометрическая прогрессия. |
|
119 | П.128 | Площади подобных фигур |
120 | Контрольная работа № 8 А (5) по теме «Прогрессии» |
| КР |
121 | §18 | РНО. Элементы комбинаторики, ста тистики и теории вероятностей/12ч Комбинаторные задачи |
122 | П.129 |
| Площадь круга |
123 | §18 | Комбинаторные задачи |
| Т |
124 | П.129 | Площадь кругового сектора и кругового сегмента |
125 | §18 | Комбинаторные задачи |
|
126 | §19 | Статистика – дизайн информации. |
127 | П.121-129СР |
| Урок-зачет (теоретический) | КИЗ |
128 | §19 | Статистика – дизайн информации. | | Т |
129 | Контрольная работа №9 Г(4) по теме «Площади фигур» | КР |
130 | §19 | Статистика – дизайн информации. |
|
131 | §20 | Простейшие вероят- ностные задачи |
132 | П.29-32 | 4четверть | Повторение курса планиметрии /14 Углы. Параллель ные прямые. РНО. | КИЗ |
133 | §20 | Простейшие вероят-ностные задачи |
| СР |
134 | П.36 | Перпендикуляр- ные прямые | Т |
135 | §20 | Простейшие вероят- ностные задачи |
|
136 | §21 | Экспериментальные данные и вероятности событий |
| СР |
137 | П.20 |
| Треугольники |
138 | Экспериментальные данные и вероятности событий |
139 | П.50 | Четырехугольники |
140 | Контрольная работа № А (6) по теме «Прогрессии» |
| КР |
141 | Итоговое повторение по теме «Рациональ -ные неравенства и их системы» РНО. |
|
142 | П.118 |
| Многоугольники | КИЗ |
143 | Итоговое повторение по теме «Рациональ- ные неравенства и их системы» |
|
144 | П.120 | Окружность. Круг |
145 | Итоговое повторение по теме «Рациональ -ные неравенства и их системы» |
|
146 | Итоговое повторение по теме «Рациональ ные неравенства и их системы» |
|
147 | П.108 |
| Преобразование фигур |
148 | Итоговое повторение по теме «Системы |
149 | П.99 | Векторы на плоскости |
150 | Итоговое повторение по теме «Системы |
|
151 | Итоговое повторение по теме «Системы |
|
152 |
| Итоговый тест |
153 | Итоговое повторение по теме «Системы |
|
|
154 | П.130 |
| РНО. Аксиомы стереометрии |
155 | Итоговое повторение по теме «Способы |
|
156 | Итоговое повторение по теме «Способы |
|
157 | П.131 | Параллельностьпрямых и плоскостей в пространстве |
158 | Итоговое повторение по теме «Способы |
159 | П.132 |
| Перпендикулярность прямых и плос костей в простр-ве |
160 | Итоговое повторение по теме «Способы |
|
161 | Итоговое повторение по теме «Прогрессии |
|
162 | П.133 | Многогранники |
163 | Итоговое повторение по теме «Прогрессии |
|
|
|
164 | П.134 | Тела вращения |
|
|
165 | Итоговое повторение по теме «Прогрессии |
|
|
166 | Итоговое повторение по теме «Прогрессии |
|
|
167 | Решение задач |
| КИЗ |
168 | Итоговая контрольная работа |
|
|
169 | Итоговый урок |
|
|
170 | РНО. |
|
|
|
По теме: методические разработки, презентации и конспекты
Рабочая программа по математике в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования на основании примерной программы по математики 5-9 классы. Математика 5 класс: И.И.Зубарева, А.
Рабочая программа разработана на один учебный год: в основу программы положены педагогические и дидактические принципы (личностно ориентированные; культурно ориентированные; деятельно...
Рабочая программа по математике класс (автор Виленкин Н.Я.))
Рабочая проргамма содержит пояснительную записку, календарно-тематическое планирование, требования к подготовке учащихся...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
РАБОЧАЯ ПРОГРАММА по математике для 5-х классов Разработана на основе примерной рабочей программы ( автор – составитель О.С. Кузнецова ) учителем математики ГБОУ школы № 645 Старковской С.Н
Настоящая рабочая программа разработана в соответствии с основными положениями федерального государственного образовательного стандарта основного общего образования по математике....
Рабочая программа по Математике 5 класса (Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под ред. В.В.Воронковой и учебника «Математика» М.Н. Перова, Г.М. Капустина)
Рабочая программа составлена на основе программы для 5-9 классов специальных (коррекционных) учреждений VIII вида, под редакцией доктора педагогических наук В.В.Воронковой Сб.1. –М.:...
РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М.
РАБОЧАЯ ПРОГРАММА Предмет математика Класс 5 Учитель Асессорова Е.М...