Индивидуальный образовательный маршрут. Показательные уравнения, неравенства и системы уравнений.
методическая разработка по алгебре (11 класс) на тему

                     Содержит инструкцию по самостоятельному изучению темы, примеры, тексты самостоятельных и контрольной работ. Предназначен для учащихся,  временно не посещающих уроки, а также для ребят, которые с опережением изучают материал.

Скачать:

ВложениеРазмер
Файл individualnyy_obrazovatelnyy_marshrut.docx19.49 КБ

Предварительный просмотр:

             Индивидуальный образовательный маршрут

(Алгебра и начала анализа.10-11 кл. Под ред. Теляковского)

Тема. Показательные уравнения , неравенства и системы неравенств.

1.Общие указания

А. В процессе работы над темой, разбирая примеры и самостоятельно решая предложенные задачи, постарайтесь в каждом случае найти ответы на следующие вопросы.

  1. В чём заключается поиск решения задачи?
  2. Какова основная идея выбранного вами метода решения?
  3. Какие различные варианты его реализации возможны?
  4. Какие возможны ошибки, способы их распознавания и исправления?

Б.Прочитайте и законспектируйте п. 36 учебника. Особое внимание уделите теореме на с.64, выделенным в тексте утверждениям и примерам решения задач на с.  229-230 .

      При чтении учебника постарайтесь:

  1. систематизировать методы решения показательных уравнений(неравенств, систем уравнений);
  2. выработать алгоритм решения показательных уравнений   (неравенств, систем уравнений);
  3. придумать способ самоконтроля своей деятельности по реализации изучаемого метода решения;
  4. составить уравнения (неравенства, системы уравнений) на каждый изученный метод решения.

                            2.Решаем вместе

Пример 1. Решите уравнение

  1. 100х-11 ∙10х +10=0.

Решение.10-11 ∙10х +10=0,

Сделаем замену у=10х  (у  › 0), тогда 102  и уравнение перепишется в виде

У2 -11у+10=0, откуда у=10;1 (корни найдены по обратной теореме Виета).

Решая уравнения 10х=10 и 10х=1, получаем х=1 и х=0.

Ответ: 0;1.

Пример 2. Решите неравенство

100х -11∙ 10х +10 ≤ 0.

Решение.

10 -11∙10х +10 ≤ 0,

сделаем замену у=10х , тогда 10=у и неравенство перепишется в виде у2 -11у +10≤  0,

 откуда

1 ≤ у≤ 10.

 Следовательно, решением данного неравенства являются числа х, удовлетворяющие неравенствам 1 ≤ 10х ≤ 10,

 и только такие числа. Но 1=100 , 10=10 1, а функция у=10х возрастает, поскольку 10 › 1. Поэтому решением неравенств 1≤ 10х≤10

будут числа х, удовлетворяющие неравенствам 0≤ х≤ 1.

 Ответ: 0  ≤ х≤ 1.

Пример 3. Решите систему уравнений

х+у=5,4х+4у=80;

Выразим из первого уравнения системы У:

У=5-Х. Подставляя вместо У во второе уравнение системы выражение

5-Х, получим 4х + 45-х =80.

4х +45-х  =80,

4х +45∙4 =80,

Обозначив 4х  за t (4х › 0), приходим к уравнению

t + 45t=80. Умножив уравнение на t, получим квадратное уравнение

t2+45 =80t.

t2- 80t+1024=0,

t=16; 64. Корнем уравнения 4х= 64 является число Х=3, а корнем уравнения 4х=16 является число Х=2. Найдём соответствующие значения У:

У= 5-Х=5- 3=2 (если Х=3) и У=5-2=3(если Х=2).

Ответ:(3;2); (2;3).

  1. Реши самостоятельно

Заполните пропуски в решении уравнений и неравенств.

А)Пример 1. Решите уравнение

  1. 9х  -8∙3х -9 =0.

Решение.

     3 -8 ∙3х -9 =0,

Сделаем замену у=… (у  › 0), тогда …=у и уравнение перепишется в виде

У2 -8у-9=0, откуда у=…;9(корни найдены по обратной теореме Виета).

Решая уравнения 3=… и 3=…, получаем х=… .

Ответ: ….

Пример 2. Решите неравенство

9х -8∙ 3х -9≤ 0.

Решение.

… -8∙3х-9≤ 0,

 сделаем замену у=…, тогда …=у и неравенство перепишется в виде у2 -…у -9≤  0,

   откуда  

0≤ у≤ 9.

 Следовательно, решением данного неравенства являются числа х, удовлетворяющие неравенствам 3х ≤ 9,

  и только такие числа. Но 9=…  , а функция у=3х  возрастает, поскольку 3› 1. Поэтому решением неравенств 3х≤ 9

  будут числа х, удовлетворяющие неравенству  х≤ ….

 Ответ: ….

Пример 3. Решите систему уравнений

х+у=3,2х+2у=6;

Выразим из первого уравнения системы У:

У=…. Подставляя вместо У во второе уравнение системы выражение

…, получим 2х + 23-х =6.

2х +8∙… =6,

Обозначив 2х  за t (2 › 0), приходим к уравнению

t + 8t =6. Умножив уравнение на t, получим квадратное уравнение

…..

T2-6t+8=0,

t=…; 4

 Корнем уравнения 2х = 4  является число х=…, а корнем уравнения 2х=…  является число х=…. Найдём соответствующие значения У:

У= 3-Х=… (если Х=…) и У=3-х=…  (если Х=…).

Ответ:(…;…);  (…;…).

  1. Выполните следующие номера из учебника (под буквой а):

464, 468, 470.

                       Предложения учителя

Мы рассмотрели основные методы, использующиеся при решении показательных уравнений и неравенств:

- приведение степеней к одному основанию;

- замену переменной.

Напишите, что вам неясно в пройденном материале.

Выполните самостоятельную работу и сдайте её на проверку.

                   Самостоятельная работа

1.Решите уравнение 4х -5∙2х +4=0.

2.Решите неравенство 4х -5∙2х +4 ›0.

3.Решите систему уравнений

х-у=3,5х+5у=626;

                    Подготовка к контрольной работе

1.Решите уравнения:

А) 4х =64; б)25х -5х+1 +6=0.

2.Решите неравенство:

А)4х› 64; б)25х -5х+1 +6 › 0.

3.Решите систему уравнений

х+у=6,3х+3у=246;

                   Контрольная работа

Показательные уравнения, неравенства, системы уравнений

  1. 1.Решите уравнения: а) 2,7х =2,7π; б)3х =81; в)3х+1 =81.
  2. 2.Решите неравенства: а)6х≤ 63; б)5х› 125; в)6х+1≤36; г)0,2х› 0,04.
  3. 3.Решите уравнение 49х +4∙ 7х - 5=0.

4.Решите неравенство

0,2х2-2х≤0,008.

5.Решите систему уравнений

х+у=7,4х+4у=320;


По теме: методические разработки, презентации и конспекты

Индивидуально-образовательный маршрут по теме "Решение квадратных уравнений"

В  сборник вошли задания по теме «Квадратные уравнения». Задания соответствуют «Обязательному минимуму  содержания общего образования» и составлены с целью контроля над уровнем усвоения базо...

Дидактический материал по темам: "Логарифмическая функция. Логарифмические уравнения, неравенства и системы", "Показательная функция. Показательные уравнения, системы и неравества"

Тренировочные задания по темам:«Показательная функция. Показательные уравнения, неравенства и системы»«Логарифмическая функция.  Логарифмические уравнения, неравенства и системы»Данный дидак...

Урок-лекция по алгебре и началам анализа "Решение тригонометрических уравнений, неравенств и систем уравнений"

В данной лекции подробно указаны все способы решения тригонометрических уравнений, неравенств и систем уравнений....

Урок-зачет по теории и практике по теме "Тригонометрические уравнения, неравенства и системы уравнений"

В данном уроке представлены вопросы к зачету и практические задания....

Индивидуальный образовательный маршрут как средство повышения профессионального мастерства педагога дополнительного образования: выбор темы, система работы и индивидуальный план по теме самообразования

Одним из показателей профессиональной компетентности педагога является его способность к самообразованию, стремление к профессиональному росту, к самосовершенствованию. В публикации представлены техно...