рабочая программа по алгебре 9 класс
рабочая программа по алгебре (9 класс) на тему
по учебнику " Алгебра. 9 класс." Мордкович
Скачать:
Вложение | Размер |
---|---|
rab_progr_9_kl_alg_moya.doc | 305.5 КБ |
Предварительный просмотр:
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Рабочая программа по алгебре 9 класса разработана на основе обязательного минимума содержания по математике 1998 г, методических рекомендаций МО РФ 2004 г. о включении в содержание математики вероятностно-статистической линии, на основе авторских программ линии И.И. Зубаревой, А.Г. Мордковича, а также с учетом методических рекомендаций по преподаванию математики в условиях новой формы аттестации выпускников 9-ых классов.
Данная программа позволяет выполнить обязательный минимум содержания образования по математике соответствии с Примерной программой основного общего образования по математике, с учетом требований федерального компонента государственного стандарта общего образования,
Данная программа предполагает реализацию с помощью УМК А.Г. Мордковича, включенного в региональный перечень учебников, год изд. 2005. Учебный план гимназии предполагает 102 часа на изучение вопросов алгебры, т.е. 3 часа в неделю.
Выбор данного УМК объясняется тем, что он содержит вероятностно-статистическую линию, богатый дидактический материал, способствующий лучшей подготовке учащихся к новой форме аттестации. Основной целью данного курса является формирование культурного человека, умеющего мыслить, понимать идеологию математического моделирования реальных процессов, владеющего математическим языком, умеющего самостоятельно добывать информацию и пользоваться ею на практике. Отличительной особенностью использования данного УМК является то, что только в 9 классе вводится определение функции, с которой в 7 классе обучающиеся работают на наглядно-интуитивном уровне, в 8 классе – на рабочем и только в 9 классе – на формальном уровне. Приоритет отдан функциональной линии, так как эта первичная математическая модель позволяет решать большой класс задач графически-функциональным методом, когда график воспринимается не только как объект изучения, но и средством решения уравнений, систем уравнений, неравенств.
Учебно-методический комплекс
- Мордкович А.Г. Алгебра, 9 класс. Учебник 2009
- Мордкович А.Г., Т.Н. Мишутина, Е.Е.Тульчинская Алгебра,9 класс. Задачник.2009г.
- Мордкович А.Г., Е.Е.Тульчинская Алгебра: Тесты для 7-9 кл., 2006.-127 с.
- А.Г. Мордкович, П.В. Семенов. События. Вероятности. Статистическая обработка данных. Дополнительные параграфы к курсу алгебры 7-9 классов, 2007 . – 112с.
Электронные пособия
- Математика 5-11 класс. 1С Практикум. Учебный диск.2006
Целью изучения курса алгебры в IX классе является развитие вычислительных и формально-оперативных алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники и др.), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач.
Характерной особенностью курса являются систематизация и обобщение знаний учащихся, закрепление и развитие умений и навыков, полученных в курсе алгебры 7-8 класса, что осуществляется как при изучении нового материала, так и при проведении обобщающего повторения. Учащиеся систематически изучают теорию уравнений и неравенств, знакомятся с основными тригонометрическими функциями, овладевают тождественными преобразованиями, свойствами числовых последовательностей, решают простейшие комбинаторные и вероятностные задачи.
Образовательный потенциал группы не достаточно сильный. Исходя из этого, при организации образовательного процесса предполагается создание авторских опорных конспектов, организация тренинговых занятий по отработке основных вычислительных навыков и методов решения уравнений и неравенств, решение жизненно-практических задач.
Авторское видение математического образования в рамках данной рабочей программы заключается в широком использовании новых информационных технологий, которые нашли свое применение в каждой школе. При планировании учебного времени на освоение курса алгебры 9 класса, предусмотрены:
- использование электронных учебных пособий,
- реализация ученических проектов;
- применение современных информационных технологий компьютерных и мультимедийных продуктов;
- интерактивное оборудование.
Тематическое планирование курса алгебры - 9 класс, общеобразовательный уровень
№ п/п | Содержание учебного материала | Количество часов по авторской программе | Количество часов по рабочей программе |
2 | Рациональные неравенства и их системы | 15 | 15 |
3 | Системы уравнений | 19 | 16 |
4 | Числовые функции | 25 | 22 |
5 | Прогрессии | 15 | 16 |
7 | Элементы комбинаторики, статистики и теории вероятности. | 13 | 12 |
8 | Итоговое повторение. | 15 | 21 |
итого | 102 ч. |
Распределение часов в соответствии с тематическим планированием объясняется следующим образом:
- часы обобщающего повторения распределены итоговое повторение. Основные вопросы: алгебраические действия с дробями, основные функции: квадратичная, обратная пропорциональность, квадратного корня; решение уравнений и неравенств – база, на которой будет строиться образовательный процесс курса алгебры в 9 классе. Цель обобщающего повторения – систематизация всего теоретического материала и практических навыков решения задач.
- незначительное уменьшение количества часов на темы: рациональные неравенства и их системы, системы уравнений и числовые функции оправдано тем, что именно при изучении этих тем предполагается активное использование цифровых образовательных ресурсов, что позволяет оптимизировать образовательный процесс. Кроме этого – это несколько знакомые понятия для обучающихся 9 класса, тогда как прогрессии и вопросы стохастической линии являются совершенно новыми для данной категории обучающихся.
Поурочное планирование
№ урока | Содержание учебного материала | Количество часов | Тип урока | Требования к уровню подготовки учащихся | Вид контроля |
Рациональные неравенства и их системы | 14 | ||||
Линейные и квадратные неравенства (повторение) | 2 | Иметь представление о решении линейных и квадратных неравенств с одной переменной. Знать, как проводить исследование функции на монотонность. Уметь: – решать линейные и квадратные неравенства с одной переменной, содержащие модуль; – решать неравенства, используя графики. | |||
Решение линейных и квадратных неравенств | 1 | Объяснение нового материала | Фронтальный индивидуальный | ||
Решение неравенств и систем неравенств различной сложности | 1 | комбинированный | Фронтальный индивидуальный | ||
Рациональные неравенства | 5 | Иметь представление о решении рациональных неравенств методом интервалов. Знать и применять правила равносильного преобразования неравенств Уметьрешать дробно-рациональные неравенства методом интервалов | |||
Понятие рациональных неравенств, решение неравенств методом интервалов | 1 | Изучение нового материала | Фронтальный индивидуальный | ||
Решение рациональных неравенств методом интервалов | 1 | комбинированный | Фронтальный индивидуальный | ||
решение рациональных неравенств методом интервалов | комбинированный | Фронтальный индивидуальный | |||
решение рациональных неравенств методом интервалов | комбинированный | Фронтальный индивидуальный | |||
Решение рациональных неравенств различного уровня сложности методом интервалов | 1 | комбинированный | Фронтальный индивидуальный | ||
Множества и операции над ними | 3 | ||||
Множества и операции над ними | 1 | Изучение нового материала | Знать определение простейшие понятия теории множеств. Уметь задавать множества, производить операции над множествами | Фронтальный индивидуальный | |
Решение упражнений - операции над множествами | 1 | комбинированный | Фронтальный индивидуальный | ||
Решение упражнений - операции над множествами | комбинированный | Фронтальный индивидуальный | |||
Системы рациональных неравенств | 4 | ||||
Решение простейших систем линейных неравенств | 1 | Изучение нового материала | Знать способы решения систем рациональных неравенств. Уметь: - решать системы линейных и квадратных неравенств, -решать двойные неравенства, -решать системы простых рациональных неравенств методом интервалов, – решать системы квадратных неравенств, используя графический метод | Фронтальный индивидуальный | |
Алгоритм решения систем квадратных неравенств | 1 | комбинированный | Фронтальный индивидуальный | ||
Решение двойных неравенств; понятие дробно-рациональных неравенств | 1 | комбинированный с/р | Фронтальный индивидуальный | ||
Решение системы неравенств с модулем; системы рациональных неравенств различной сложности | 1 | комбинированный | Фронтальный индивидуальный | ||
Контрольная работа №2 по теме: Рациональные неравенства и их системы | 1 | Контроль знаний и умений | индивидуальный | ||
Системы уравнений | 18 | ||||
Основные понятия | 5 | ||||
Основные понятия | 1 | комбинированный | Иметь понятие о решении системы уравнений и неравенств. Знать равносильные преобразования уравнений и неравенств с двумя 17/10переменными. Уметь определять понятия, приводить доказательства. | фронтальный индивидуальный | |
Основные понятия | 1 | комбинированный | фронтальный индивидуальный | ||
Методы решения систем уравнений | 8 | ||||
решение системы уравнений методом подстановки | 1 | комбинированный | Знать алгоритм метода подстановки. Уметь решать системы уравнений методом подстановки, методом алгебраического сложения, методом введения новых переменных. | фронтальный индивидуальный | |
решение системы уравнений методом подстановки | 1 | комбинированный | фронтальный индивидуальный | ||
решение системы уравнений методом алгебраического сложения | комбинированный | фронтальный индивидуальный | |||
решение системы уравнений методом алгебраического сложения | 1 | комбинированный | фронтальный индивидуальный | ||
решение системы уравнений методом замены переменных | 1 | комбинированный | фронтальный индивидуальный | ||
решение системы уравнений различными методами | 1 | комбинированный | фронтальный индивидуальный | ||
Равносильность систем уравнений | 1 | комбинированный | фронтальный индивидуальный | ||
Равносильность систем уравнений | 1 | комбинированный | фронтальный индивидуальный | ||
Системы уравнений как математические модели реальных ситуаций | 5 | ||||
Модель решения задач на натуральные числа. Составление системы уравнений по условию задачи | 1 | комбинированный | нать, как составлять математические модели реальных ситуаций и работать с составленной моделью. Уметь составлять математические модели реальных ситуаций и работать с составленной моделью. | фронтальный индивидуальный | |
Модель решения задач на движение по дороге. Составление системы уравнений по условию задачи | 1 | комбинированный | фронтальный индивидуальный | ||
Модель решения задач на движение по воде. Составление системы уравнений по условию задачи | 1 | комбинированный | фронтальный индивидуальный | ||
Модель решения задач на проделанную работу. Составление системы уравнений по условию задачи | 1 | комбинированный | фронтальный индивидуальный | ||
Решение системы уравнений по условию задачи различной ситуации | 1 | комбинированный | фронтальный индивидуальный | ||
Контрольная работа №3 по теме: системы уравнений | 1 | Контроль знаний и умений | Уметь, решая практические задачи, составлять математические модели реальных ситуаций и работать с составленной моделью. | индивидуальный | |
Числовые функции | 22 | ||||
Определение числовой функции. Область определения, область значений функции. | 4 | ||||
Определение числовой функции, ее область определения и области значения. | 1 | комбинированный | Знать определения числовой функции, области определения, области значения функции, графика функции. Уметь находить область определения функции | фронтальный индивидуальный | |
Нахождение области определения и области значения числовой функции | 1 | комбинированный | фронтальный индивидуальный | ||
Нахождение области определения и области значения числовой функции | 1 | комбинированный | фронтальный индивидуальный | ||
Нахождение области определения и области значения числовой функции | 1 | комбинированный | фронтальный индивидуальный | ||
Контрольная работа « Числовые функции. Область определения, область значения» | индивидуальный | ||||
Способы задания функций | 2 | ||||
Аналитический, графический, табличный способ задания функций | 1 | комбинированный | Знать способы задания функции: аналитический, графический, табличный, словесный. Уметь: -при задании функции применять различные способы: аналитический, графический, табличный, словесный, - решать графически уравнения. | фронтальный индивидуальный | |
Словесный способ задания функции | 1 | комбинированный | фронтальный индивидуальный | ||
Свойства функций | 5 | ||||
Основные свойства различных функций(монотонность, ограниченность, выпуклость, наибольшее и наименьшее значение и непрерывность). Исследование функций y=c; | 1 | комбинированный | Знать свойства функции: монотонность, наибольшее и наименьшее значения функции, ограниченность, выпуклость и непрерывность. Уметь исследовать функции на монотонность, наибольшее и наименьшее значение, ограниченность, выпуклость и непрерывность. | фронтальный индивидуальный | |
Исследование функций | 1 | комбинированный | фронтальный индивидуальный | ||
Описание свойств различных функций (решение задач) | 1 | комбинированный | фронтальный индивидуальный | ||
Описание свойств различных функций (решение задач) | 1 | комбинированный | фронтальный индивидуальный | ||
Описание свойств различных функций (решение задач) | 1 | комбинированный | фронтальный индивидуальный | ||
Четные и нечетные функции | 2 | ||||
Понятие четности и нечетности функции, алгоритм исследования функции на четность и нечетность | 1 | комбинированный | Знать понятия четной и нечетной функции, алгоритм исследования функции на чётность и нечётность. Уметь применять алгоритм исследования функции на четность и строить графики четных и нечетных функций. | фронтальный индивидуальный | |
Графики четной и нечетной функции | 1 | комбинированный | фронтальный индивидуальный | ||
Функции , их свойства и графики | 2 | ||||
Степенная функция с натуральным нечетным показателем. Чтение графика функции и графическое решение неравенства | 1 | комбинированный | Знать о понятии степенной функции с натуральным показателем, о свойствах и графике функции. Уметь: - определять графики функций с четным и нечетным показателем, -строить и читать графики степенных функций. | фронтальный индивидуальный | |
Решение заданий на построение функций с натуральным показателем. Нахождение точек пересечения графиков функций | 1 | комбинированный | фронтальный индивидуальный | ||
Функции , их свойства и графики | 2 | ||||
Степенная функция с отрицательным целым, нечетным показателем и ее свойства. Чтение графика функции | 1 | комбинированный | Знать о понятии степенной функции с отрицательным целым показателем, о свойствах и графике функции. Уметь: - определять графики функций с четным и нечетным отрицательным целым показателем, -решать графически уравнения, -строить графики степенных функций с любым показателем степени, -читать свойства по графику функции, -строить графики функций по описанным свойствам. | фронтальный индивидуальный | |
Построения функций с отрицательным целым показателем | 1 | комбинированный | фронтальный индивидуальный | ||
Функция y=3x, ее свойства и график | 1 | комбинированный | фронтальный индивидуальный | ||
Функция y=3x, ее свойства и график | 1 | комбинированный | фронтальный индивидуальный | ||
Функция y=3x, ее свойства и график | 1 | комбинированный | фронтальный индивидуальный | ||
Контрольная работа №4 | 1 | Контроль знаний и умений | индивидуальный | ||
Прогрессии | 16 | ||||
Числовые последовательности | 4 | ||||
Понятие числовой последовательности. Последовательности, заданные с помощью формулы -го члена и словесно. | 1 | комбинированный | Знать определение числовой последовательности, способы задания числовой последовательности. Уметь задать числовую последовательность аналитически, словесно, рекуррентно. | фронтальный индивидуальный | |
Последовательности, заданные рекуррентной формулой. Свойства числовых последовательностей. | 1 | комбинированный | фронтальный индивидуальный | ||
Составления формулы -го члена последовательности по первым его членам. Решение заданий повышенной сложности | 1 | комбинированный | фронтальный индивидуальный | ||
Составления формулы -го члена последовательности по первым его членам. | 1 | комбинированный | фронтальный индивидуальный | ||
Арифметическая прогрессия | 5 | ||||
Понятие арифметической прогрессии и разности арифметической прогрессии | 1 | комбинированный | Знать определение и формулу n-го члена арифметической прогрессии, формулу суммы членов конечной арифметической прогрессии, характеристическое свойство арифметической прогрессии. Уметь: -применять формулы n-го члена арифметической прогрессии, суммы членов конечной арифметической прогрессии при решении задач, - применять характеристическое свойство арифметической прогрессии при решении математических задач. | фронтальный индивидуальный | |
Вывод формулы -го члена арифметической прогрессии. Решение заданий с применением этой формулы | 1 | комбинированный | фронтальный индивидуальный | ||
Вывод формулу суммы членов конечной арифметической прогрессии. Решение заданий с применением этой формулы | 1 | комбинированный | фронтальный индивидуальный | ||
Характеристическое свойство арифметической прогрессии. Решение задач на применение формул суммы и -го члена арифметической прогрессии | 1 | комбинированный | фронтальный индивидуальный | ||
Решение задач на применение формул суммы и -го члена арифметической прогрессии | 1 | комбинированный | фронтальный индивидуальный | ||
Геометрическая прогрессия | 6 | ||||
Понятие геометрической прогрессии и знаменатель геометрической прогрессии | 1 | комбинированный | Знать определение и формулу n-го члена геометрической прогрессии, формулу суммы членов конечной геометрической прогрессии, характеристическое свойство геометрической прогрессии. Уметь применять формулу n-го члена геометрической прогрессии, формулу суммы членов конечной геометрической прогрессии, характеристическое свойство геометрической прогрессии при решении задач. | фронтальный индивидуальный | |
Вывод формулы -го члена геометрической прогрессии. Применением данной формулы | 1 | комбинированный | фронтальный индивидуальный | ||
Вывод формулы суммы членов конечной геометрической прогрессии | 1 | комбинированный | фронтальный индивидуальный | ||
Характеристическое свойство геометрической прогрессии. Решение задач | 1 | комбинированный | фронтальный индивидуальный | ||
Применения формул суммы, -го члена и характеристического свойства геометрической прогрессии | 1 | комбинированный | фронтальный индивидуальный | ||
Решение комбинированных задач арифметической и геометрической прогрессии | 1 | комбинированный | фронтальный индивидуальный | ||
Контрольная работа №5 по теме: прогрессии | 1 | Контроль знаний и умений | Уметь решать задания на применение свойств арифметической и геометрической прогрессии | индивидуальный | |
Элементы комбинаторики, статистики и теории вероятностей | 12 | ||||
Простейшие комбинаторные задачи. Правило умножения. Перестановки | 3 | Знать, как решать простейшие комбинаторные задачи, рассматривая дерево возможных вариантов, правило умножения Уметь решать простейшие комбинаторные задачи, рассматривая дерево возможных вариантов, правило умножения. | |||
Правило умножения. Дерево вариантов | 1 | комбинированный | фронтальный индивидуальный | ||
Перестановки. Формула числа перестановок. Понятие факториала числа | 1 | комбинированный | фронтальный индивидуальный | ||
Решение простейших комбинаторных задач | 1 | комбинированный | фронтальный индивидуальный | ||
Статистика-дизайн информации | 3 | ||||
Общий ряд данных. Варианты и их кратности. | 1 | комбинированный | Знать статистические методы обработки информации, числовые характеристики информации. Уметь указывать общий ряд данных измерений, наименьшую и наибольшую варианты, определять кратность варианты, процентную частоту, строить многоугольник процентных частот | фронтальный индивидуальный | |
Полигон распределения данных. Гистограмма | 1 | комбинированный | фронтальный индивидуальный | ||
Числовые характеристики выборки (размах, мода, среднее значение) | 1 | комбинированный | фронтальный индивидуальный | ||
Кривая нормального распределения. Решение задач | 1 | комбинированный | фронтальный индивидуальный | ||
Простейшие вероятностные задачи | 3 | ||||
Простейшие вероятностные задачи | 1 | комбинированный | Знать классическую вероятностную схему, классическое определение вероятности, понятия случайное событие, достоверное и невозможное события, несовместные события, события, противоположные данному событию. Уметь находить вероятность события | фронтальный индивидуальный | |
Простейшие вероятностные задачи | 1 | комбинированный | фронтальный индивидуальный | ||
Простейшие вероятностные задачи | 1 | комбинированный | фронтальный индивидуальный | ||
Экспериментальные данные и вероятности событий | 2 | ||||
Экспериментальные данные и вероятности событий | 1 | комбинированный | Иметь представление о статистической устойчивости, статистической вероятности. Уметь решать простейшие статистические | фронтальный индивидуальный | |
Экспериментальные данные и вероятности событий | 1 | комбинированный | фронтальный индивидуальный | ||
Контрольная работа №6 по теме: Элементы комбинаторики, статистики и теории вероятностей | 1 | Контроль знаний и умений | индивидуальный | ||
Итоговое повторение курса алгебры 9 класса | 11 | ||||
Рациональные неравенства и их системы | 1 | комбинированный | Уметь: -выполнять разложение многочленов на множители с помощью нескольких способов, -выполнять многошаговые преобразования целых и дробных выражений, применяя широкий набор изученных алгоритмов, -выполнять преобразования выражений, содержащих степени с целями показателями, квадратные корни. Уметь: -решать целые и дробно-рациональные уравнения, -применять при решении уравнений алгебраические преобразования, а также такие приемы, как разложение на множители, замена переменной, -решать уравнения графически. Уметь решать системы линейных равнений и системы, содержащие нелинейные уравнения, способами подстановки и сложения. Уметь: -решать линейные неравенства с одной переменной и их системы, требующих алгебраических преобразований, -выбирать решения, удовлетворяющие дополнительным условиям, -решать квадратные неравенства и системы Уметь: -строить графики изученных функций, -использовать графические представления для ответа на вопросы, связанные с исследованием функций. | фронтальный индивидуальный | |
Решение рациональных неравенств различного уровня сложности методом интервалов | 1 | комбинированный | фронтальный индивидуальный | ||
Решение систем уравнений | 1 | комбинированный | фронтальный индивидуальный | ||
Решения задач на движение по воде (дороге), работу, натуральные числа | 1 | комбинированный | фронтальный индивидуальный | ||
Числовые функции. Исследование функций | 1 | комбинированный | фронтальный индивидуальный | ||
Степенная функция, ее свойства и график | 1 | комбинированный | фронтальный индивидуальный | ||
Решение задач на арифметическую прогрессию | 1 | комбинированный | фронтальный индивидуальный | ||
Решение задач на геометрическую прогрессию | 1 | комбинированный | фронтальный индивидуальный | ||
Итоговое тестирование | 1 | комбинированный | индивидуальный | ||
- | Решение задач по курсу алгебры 7-9 | 9 | комбинированный | фронтальный индивидуальный | |
Итоговая контрольная работа за год | 1 | Контроль знаний и умений | Уметь: -составлять уравнения прямых и парабол по заданным условиям. | индивидуальный | |
Анализ контрольной работы | 1 |
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ
9 КЛАССОВ
В результате изучения математики ученик должен
знать/понимать:
- существо понятия математического доказательства; примеры до казательств;
- существо понятия алгоритма; примеры алгоритмов;
- как используются математические формулы, уравнения и неравен ства; примеры их применения для решения математических и практических задач;
- как математически определенные функции могут описывать ре альные зависимости; приводить примеры такого описания;
- как потребности практики привели математическую науку к необ ходимости расширения понятия числа;
- вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
- смысл идеализации, позволяющей решать задачи реальной дейст вительности математическими методами, примеры ошибок, воз никающих при идеализации;
В результате изучения математики ученик должен уметь:
Арифметика
- выполнять устно арифметические действия: сложение и вычита ние двузначных чисел и десятичных дробей с двумя знаками, ум ножение однозначных чисел, арифметические операции с обык новенными дробями с однозначным знаменателем и числителем;
- переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;
- выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в не сложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;
- округлять целые числа и десятичные дроби, находить приближе ния чисел с недостатком и с избытком, выполнять оценку число вых выражений;
- пользоваться основными единицами длины, массы, времени, ско рости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
- решать текстовые задачи, включая задачи, связанные с отношени ем и с пропорциональностью величин, дробями и процентами;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- решения несложных практических расчетных задач, в том числе с использованием при необходимости справочных материалов, калькулятора, компьютера;
- устной прикидки и оценки результата вычислений; проверки ре зультата вычисления с использованием различных приемов;
- интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;
Алгебра
- составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подста новку одного выражения в другое; выражать из формул одну пере менную через остальные;
- выполнять основные действия со степенями с целыми показателя ми, с многочленами и с алгебраическими дробями; выполнять раз ложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
- применять свойства арифметических квадратных корней для вы числения значений и преобразований числовых выражений, со держащих квадратные корни;
- решать линейные, квадратные уравнения и рациональные уравне ния, сводящиеся к ним, системы двух линейных уравнений и не сложные нелинейные системы;
- решать линейные и квадратные неравенства с одной переменной и их системы;
- решать текстовые задачи алгебраическим методом, интерпретиро вать полученный результат, проводить отбор решений, исходя из формулировки задачи;
- изображать числа точками на координатной прямой;
- определять координаты точки плоскости, строить точки с задан ными координатами; изображать множество решений линейного неравенства;
- распознавать арифметические и геометрические прогрессии; ре шать задачи с применением формулы общего члена и суммы не скольких первых членов;
- находить значения функции, заданной формулой, таблицей, гра фиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
- определять свойства функции по ее графику; применять графиче ские представления при решении уравнений, систем, неравенств;
- описывать свойства изученных функций, строить их графики;
использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- выполнения расчетов по формулам, составления формул, выра жающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
- моделирования практических ситуаций и исследовании построен ных моделей с использованием аппарата алгебры;
- описания зависимостей между физическими величинами соответ ствующими формулами при исследовании несложных практиче ских ситуаций;
- интерпретации графиков реальных зависимостей между величина ми;
Элементы логики, комбинаторики, статистики и теории вероятностей
- проводить несложные доказательства, получать простейшие след ствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утвержде ний;
- извлекать информацию, представленную в таблицах, на диаграм мах, графиках; составлять таблицы, строить диаграммы и графики;
- решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умноже ния;
- вычислять средние значения результатов измерений;
- находить частоту события, используя собственные наблюдения и готовые статистические данные;
- находить вероятности случайных событий в простейших случаях;
Критерии и нормы оценки знаний, умений и навыков обучающихся по алгебре.
1. Оценка письменных контрольных работ обучающихся по алгебре.
Ответ оценивается отметкой «5», если:
- работа выполнена полностью;
- в логических рассуждениях и обосновании решения нет пробелов и ошибок;
в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания
- учебного материала).
Отметка «4» ставится в следующих случаях:
- работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
- допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).
Отметка «3» ставится, если:
- допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.
Отметка «2» ставится, если:
- допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.
Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий.
2. Оценка устных ответов обучающихся по алгебре.
Ответ оценивается отметкой «5», если ученик:
- полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;
- изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности;
- правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;
- показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания;
- продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков;
- отвечал самостоятельно, без наводящих вопросов учителя;
- возможны одна – две неточности при освещении второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя.
Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков:
- в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа;
- допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя;
- допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя.
Отметка «3» ставится в следующих случаях:
- неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала;
- имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;
- ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;
- при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.
Отметка «2» ставится в следующих случаях:
- не раскрыто основное содержание учебного материала;
- обнаружено незнание учеником большей или наиболее важной части учебного материала;
- допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя.
По теме: методические разработки, презентации и конспекты
Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Теляковского. - М.: Просвещение, 2010.
Рабочая программа по алгебре. 7 класс. Макарычев Ю. Н. Алгебра: учебник для 7 класса общеобразовательных учреждений / Ю. Н. Макарычев, К. И. Нешков, Н. Г. Миндюк, С. Б. Суворова; под ред. С. А. Т...
Рабочие программы по алгебре 8 класс,автор Ю.Н.Макарычев под редакцией Теляковского и по алгебре и началам математического анализа 11 класс, под редакцией А.Н.Колмогорова
Рабочая программа по алгебре 8 класс, автор Ю.Н.Макарычев под редакцией С.А.Теляковского на 2012-2013 уч.годРабочая программа по алгебре и началам анализа 11 класс под редакцией А.Н.Колмогорова на 201...
Рабочая программа по алгебре 8-9 классы (базовый уровень) к УМК Алгебра 8. Алгебра 9. Макарычев Ю. Н., Миндюк Н.Г. и др
Содержание рабочей программы: Пояснительная записка. Содержание курса. Тематический план. Ожидаемые результаты. Календарно-тематическое планирование. Рабочая программа составлена на основе: - Феде...
РАБОЧАЯ ПРОГРАММА ПО АЛГЕБРЕ Класс: 8 (базовый уровень)
Тематический план по алгебре разработан в соответствии с Примерной программой основного общего образования по математике, с учетом требований федерального компонента государственного...
Аннотация к рабочей программе по математике (алгебре и началам анализа), 11 класс , профильный уровень; рабочая программа по алгебре и началам анализа профильного уровня 11 класс и рабочая программа по алгебре и началам анализа базового уровня 11 класс
Аннотация к рабочей программе по МАТЕМАТИКЕ (алгебре и началам анализа) Класс: 11 .Уровень изучения учебного материала: профильный.Программа по алгебре и началам анализа для 11 класса составлена на ос...
Рабочая программа по алгебре для 10-11 классов, разработанная в соответствии с ФКГОС-2004 . Авторская программа для общеобразовательных учреждений Краснодарского края: Алгебра и начала анализа. 10 – 11 классы (автор-составитель Е.А. Семенко).
РАБОЧАЯ ПРОГРАММА по алгебре и началам анализа. Уровень образования (класс): среднее общее образование (10- 11 классы). Количество часов - 204. Учитель...
РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс 9 Учитель Асессорова Е.М.
РАБОЧАЯ ПРОГРАММА Предмет алгебра Класс...