Рабочая программа по математике для 1 класса
календарно-тематическое планирование по математике (1 класс) на тему

Демченко Наталья Сергеевна

 

Рабочая программа по математике составлена на основе Федерального государственного образовательного стандарта 2009г., учебного плана, Примерной программы начального общего образования 2008г. с учетом авторской  программы по УМК «Перспективная начальная школа» А.Л. Чекина, Р.Г. Чураковой. - Рабочая программа по математике. – Волгоград: Учитель, 2012.

Скачать:

ВложениеРазмер
Microsoft Office document icon rabochaya_programma_po_matematike.doc163 КБ

Предварительный просмотр:

                                                  

         

 

   

Рабочая программа

по математике  

для 1 класса

4 часа в неделю (всего 132 часа)

Автор-составитель:

Демченко Наталья Сергеевна

2012 - 2013 учебный год

Пояснительная записка

Рабочая программа по математике составлена на основе Федерального государственного образовательного стандарта 2009г., учебного плана, Примерной программы начального общего образования 2008г. с учетом авторской  программы по УМК «Перспективная начальная школа» А.Л. Чекина, Р.Г. Чураковой. - Рабочая программа по математике. – Волгоград: Учитель, 2012.

Нормативно правовые документы, на основании которых разработана рабочая программа:

  1. Закон РФ «Об образовании»  от 10 июля 1992 г. N 3266-1  Последнее обновление: 27.12.2009 г.
  2. Федеральный компонент государственного стандарта. Приказ Министерства образования и науки РФ от 06.10.2009 №373 «Об утверждении федерального государственного образовательного стандарта начального общего  образования».
  1. Примерная образовательная программа начального (среднего) общего образования.
  2. Основная  образовательная программа начального образования МБОУ СОШ №7.
  3. «Положение о порядке разработки, утверждения и структуре рабочих программ учебных предметов в МБОУ СОШ №7 города Ноябрьск, реализующей программы общего образования»
  4. «Федеральный перечень учебников, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих образовательные программы общего образования и имеющих государственную аккредитацию, на 2012/2013 учебный год».

Рабочая программа ориентирована на использование учебно-методического комплекса:

 Чекин, А. Л. Математика : 1 класс : учебник : в 2 ч. / А. Л. Чекин ; под ред. Р. Г. Чураковой. – М. : Академкнига/Учебник, 2012;

 Юдина, Е. П. Математика в вопросах и заданиях : 1 класс : тетрадь для самостоятельной работы № 1, 2 / Е. П. Юдина ; под ред. Р. Г. Чураковой. – М. : Академкнига/Учебник, 2012;

 Чекин, А. Л. Математика : 1 класс : методическое пособие для учителя. – М. : Академкнига/Учебник, 2011.

  1.  Чекин, А.Л., Математика. 1 класс: поурочные планы по учебнику./авт.-сост. Н.В.Лободина. - Волгоград: Учитель, 2011.

Выбор данной авторской программы и учебно-методического комплекса обусловлен необходимостью выполнения требований Стандарта с учетом межпредметных и внутрипредметных связей, логики учебного процесса, задачи формирования у младшего школьника умения учиться.

Место и роль учебного предмета в учебном плане.

В соответствии с Примерным учебным планом в 1-ом классе на изучение предмета «Математика» отводится 132 часов (4 часа в неделю).

Количество

часов

Четверти

За год

1

2

3

4

по программе

34

29

37

32

132

           Предлагаемый начальный курс математики имеет следующие цели.

        •Развитие у обучающихся познавательных действий: логических и алгоритмических (включая знаково-символические), а также аксиоматику, формирование элементов системного мышления, планирование (последовательность действий при решении задач), систематизацию и структурирование знаний, моделирование, дифференциацию существенных и несущественных условий.

        •Математическое развитие младшего школьника: использование математических представлений для описания окружающей действительности в количественном и пространственном отношении; формирование способности к продолжительной умственной деятельности, основ логического мышления, пространственного воображения, математической речи и аргументации, способности различать верные и неверные высказывания, делать обоснованные выводы.

        •Освоение начальных математических знаний: формирование умения решать учебные и практические задачи математическими средствами: вести поиск информации (фактов, сходства, различий, закономерностей, оснований для упорядочивания и классификации, вариантов); понимать значение величин и способов их измерения; использовать арифметические способы для разрешения сюжетных ситуаций (строить простейшие математические модели); работать с алгоритмами выполнения арифметических действий, решения задач, проведения простейших построений. Проявлять математическую готовность к продолжению образования.

        •Воспитание критичности мышления, интереса к умственному труду, стремления использовать математические знания в повседневной жизни.

        Таким образом, предлагаемый начальный курс математики призван ввести ребенка в абстрактный мир математических понятий и их свойств, охватывающий весь материал, содержащийся в примерной программе по математике в рамках Стандарта. Дать ему первоначальные навыки ориентации в той части реальной действительности, которая описывается (моделируется) с помощью этих понятий, а именно: окружающий мир как множество форм, как множество предметов, отличающихся величиной, которую можно выразить числом, как разнообразие классов конечных равночисленных множеств и т. п. А также предложить ребенку соответствующие способы познания окружающей действительности.

Логика изложения и содержание авторской программы полностью соответствуют требованиям федерального компонента государственного стандарта начального образования, поэтому в программу не внесено никаких изменений; при этом учтено, что учебные темы, которые не входят в обязательный минимум содержания основных образовательных программ, отнесены к элементам дополнительного (необязательного) содержания.

Общая характеристика учебного предмета

Основная дидактическая идея курса может быть выражена следующей формулой: «через рассмотрение частного к пониманию общего для решения частного». При этом ребенку предлагается постичь суть предмета через естественную связь математики с окружающим миром. Все это означает, что знакомство с тем или иным математическим понятием осуществляется при рассмотрении конкретной реальной или псевдореальной (учебной) ситуации, соответствующий анализ которой позволяет обратить внимание ученика на суть данного математического понятия. В свою очередь, такая акцентуация дает возможность добиться необходимого уровня обобщений без многочисленного рассмотрения частностей. Наконец, понимание общих закономерностей и знание общих приемов решения открывает ученику путь к выполнению данного конкретного задания даже в том случае, когда с такого типа заданиями ему не приходилось еще сталкиваться.

        Логико-дидактической основой реализации первой части формулы является неполная индукция, которая в комплексе с целенаправленной и систематической работой по формированию у младших школьников таких приемов умственной деятельности, как анализ и синтез, сравнение, классификация, аналогия и обобщение, приведет ученика к самостоятельному «открытию» изучаемого математического факта. Вторая же часть формулы носит дедуктивный характер и направлена на формирование у учащихся умения конкретизировать полученные знания и применять их к решению поставленных задач.

        Отличительной чертой настоящего курса является значительное увеличение той роли, которую мы отводим изучению геометрического материала и изучению величин, что продиктовано той группой поставленных целей, в которых затрагивается связь математики с окружающим миром. Без усиления этих содержательных линий невозможно достичь указанных целей, так как ребенок воспринимает окружающий мир, прежде всего, как совокупность реальных предметов, имеющих форму и величину. Изучение же арифметического материала, оставаясь стержнем всего курса, осуществляется с возможным паритетом теоретической и прикладной составляющих, а в вычислительном плане особое внимание уделяется способам и технике устных вычислений.

        Содержание всего курса можно представить как взаимосвязанное развитие пяти основных содержательных линий: арифметической, геометрической, величинной, алгоритмической (обучение решению задач) и информационной (работа с данными). Что же касается вопросов алгебраического характера, то они рассматриваются в других содержательных линиях, главным образом, арифметической и алгоритмической.

Арифметическая линия, прежде всего, представлена материалом по изучению чисел. Числа изучаются в такой последовательности: натуральные числа от 1 до 10 и число 0 (1-е полугодие 1 класса), целые числа от 0 до 20 (2-е полугодие 1 класса. Числа от 1 до 5 и число 0 изучаются на количественной основе. Числа от 6 до 10 изучаются на аддитивной основе с опорой на число 5. Числа второго десятка и все остальные натуральные числа изучаются на основе принципов нумерации (письменной и устной) десятичной системы счисления. Дробные числа возникают сначала для записи натуральной доли некоторой величины. В дальнейшем дробь рассматривается как сумма соответствующих долей, и на этой основе выполняется процедура сравнения дробей. Изучение чисел и их свойств представлено также заданиями на составление числовых последовательностей по заданному правилу и на распознавание (формулировку) правила, по которому составлена данная последовательность, представленная несколькими первыми ее членами.

        Особенностью изучения арифметических действий в настоящем курсе является строгое следование математической сути этого понятия. Именно поэтому при введении любого арифметического действия (бинарной алгебраической операции) с самого начала рас-

сматриваются не только компоненты этого действия, но и в обязательном порядке его результат. Если не введено правило, согласно которому по известным двум компонентам можно найти результат действия (хотя бы на конкретном примере), то само действие не определено. Без результата нет действия! По этой причине мы считаем некорректным рассматривать, например, сумму до рассмотрения сложения. Сумма указывает на намерение совершить действие сложения, но если сложение еще не определено, то каким образом можно трактовать сумму? В этом случае вопрос остается без ответа.

        Арифметические действия над числами изучаются на следующей теоретической основе и в такой последовательности.

        • Сложение (систематическое изучение начинается с первого полугодия 1 класса) определяется на основе объединения непересекающихся множеств и сначала выполняется на множестве чисел от 0 до 5. В дальнейшем числовое множество, на котором выполняется сложение, расширяется, причем это расширение происходит с помощью сложения (при сложении уже известных учащимся чисел получается новое для них число). Далее изучаются свойства сложения, которые используются при проведении устных и письменных вычислений. Сложение многозначных чисел базируется на знании таблицы сложения однозначных чисел и поразрядном способе сложения.

        • Вычитание (систематическое изучение начинается со второго полугодия 1 класса) изначально вводится на основе вычитания подмножества из множества, причем происходит это, когда учащиеся изучили числа в пределах первого десятка. Далее устанавливается связь между сложением и вычитанием, которая базируется на идее обратной операции. На основе этой связи выполняется вычитание с применением таблицы сложения, а потом осуществляется переход к рассмотрению случаев вычитания многозначных чисел, где основную роль играет поразрядный принцип вычитания, возможность которого базируется на соответствующих свойствах вычитания.

                Геометрическая линия выстраивается следующим образом.

        В первом классе (на который выпадает самая большая содержательная нагрузка геометрического характера) изучаются следующие геометрические понятия: плоская геометрическая фигура (круг, треугольник, прямоугольник), прямая и кривая линии, точка, отрезок, дуга, направленный отрезок (дуга), пересекающиеся и непересекающиеся линии, ломаная линия, замкнутая и незамкнутая линии, внутренняя и внешняя области относительно границы, многоугольник, симметричные фигуры.

                При этом следует иметь в виду, что знакомство практически с любым геометрическим понятием в данном учебном курсе осуществляется на основе анализа соответствующей реальной (или псевдореальной) ситуации, в которой фигурирует предметная модель данного понятия.

        Линия по изучению величин представлена такими понятиями, как длина, время, масса, величина угла, площадь, вместимость (объем), стоимость. Умение адекватно ориентироваться в пространстве и во времени – это те умения, без которых невозможно обойтись как в повседневной жизни, так и в учебной деятельности. Элементы ориентации в окружающем пространстве являются отправной точкой в изучении геометрического материала, а знание временных отношений позволяет правильно описывать ту или иную последовательность действий (в том числе строить и алгоритмические предписания). В связи с этим изучению пространственных отношений отводится несколько уроков в самом начале курса. При этом сначала изучаются различные характеристики местоположения объекта в пространстве, а потом характеристики перемещения объекта в пространстве.

        Из временных понятий сначала рассматриваются отношения «раньше» и «позже», понятия «часть суток» и «время года», а также время как продолжительность. Учащимся дается понятие о «суточной» и «годовой» цикличности.

        Систематическое изучение величин начинается уже в первом полугодии первого класса с изучения величины «длина». Сначала длина рассматривается в доизмерительном аспекте. Сравнение предметов по этой величине осуществляется «на глаз» по рисунку или по представлению, а также способом «приложения». Результатом такой работы должно явиться понимание учащимися того, что реальные предметы обладают свойством иметь определенную протяженность в пространстве, по которому их можно сравнивать. Таким же свойством обладают и отрезки. Никаких измерений пока не проводится. Во втором полугодии первого класса учащиеся знакомятся с процессом измерения длины, стандартными единицами длины (сантиметром и дециметром), процедурой сравнения длин на основе их измерения, а также с операциями сложения и вычитания длин.

                Изучение величины «время» во втором классе начинается с рассмотрения временных промежутков и измерения их продолжительности с помощью часов, устанавливается связь между моментами времени и продолжительностью по времени. Вводятся стандартные единицы времени (час, минута, сутки, неделя) и соотношения между ними. Особое внимание уделяется изменяющимся единицам времени (месяц, год) и соотношениям между ними и постоянными единицами времени. Вводится самая большая изучаемая единица времени – век. Кроме этого, рассматривается операция деления однородных величин, которая трактуется как измерение делимой величины в единицах величины-делителя.

                Линия по обучению решению арифметических сюжетных (текстовых) задач (условно мы ее называем алгоритмической) является центральной для данного курса. Ее особое положение определяется тем, что настоящий курс имеет прикладную направленность,

которая выражается в умении применять полученные знания на практике. А это, в свою очередь, связано с решением той или иной задачи. При этом для нас важно не только научить учащихся решать задачи, но и правильно формулировать их, используя имеющуюся информацию. Особое внимание мы хотим обратить на тот смысл, который нами вкладывается в термин «решение задачи»: под решением задачи мы понимаем запись (описание) алгоритма, дающего возможность выполнить требование задачи. Сам процесс выполнения алгоритма (получение ответа задачи) важен, но не относится нами к обязательной составляющей умения решать задачи (получение ответа задачи мы относим, прежде всего, к области вычислительных умений). Такой подход к толкованию термина «решение задачи» нам представляется наиболее правильным.

        Во-первых, это согласуется с современным «математическим» пониманием сути данного вопроса, во-вторых, ориентация учащихся на «алгоритмическое» мышление будет способствовать более успешному освоению ими основ информатики и новых информационных технологий. Само описание алгоритма решения задачи мы допускаем в трех видах: 1) по действиям (по шагам) с пояснениями, 2) в виде числового выражения, которое мы рассматриваем как свернутую форму описания по действиям, но без пояснений, 3) в виде буквенного выражения (в некоторых случаях в виде формулы или в виде уравнения) с использованием стандартной символики. Последняя форма описания алгоритма решения задачи будет использоваться только после того, как учащимися достаточно хорошо будут усвоены зависимости между величинами, а также связь между результатом и компонентами действий.

        Что же касается самого процесса нахождения решения задачи (а в этом смысле термин «решение задачи» также часто употребляется), то мы в нашем курсе не ставим целью осуществить его полную алгоритмизацию. Более того, мы вполне осознаем, что этот процесс, как правило, содержит этап нестандартных (эвристических) действий, что препятствует его полной алгоритмизации. Но частичная его алгоритмизация (хотя бы в виде четкого усвоения последовательности этапов работы с задачей) не только возможна, но и необходима для формирования у учащихся общего умения решать задачи.

        Для формирования умения решать задачи учащиеся в первую очередь должны научиться работать с текстом и иллюстрациями: определить, является ли предложенный текст задачей, или как по данному сюжету сформулировать задачу, установить связь между данными и искомым и последовательность шагов по установлению значения искомого.         Другое направление работы с понятием «задача» связано с проведением различных преобразований имеющегося текста и наблюдениями за теми изменениями в ее решении, которые возникают в результате этих преобразований. К этим видам работы относятся: дополнение текстов, не являющихся задачами, до задачи; изменение любого из элементов

задачи, представление одной и той же задачи в разных формулировках; упрощение и усложнение исходной задачи; поиск особых случаев изменения исходных данных, приводящих к упрощению решения; установление задач, которые можно решить при помощи уже решенной задачи, что в дальнейшем становится основой классификации задач по сходству математических отношений, заложенных в них.

        Информационная линия, в которой рассматривается разнообразная  работа с данными, как это и предусмотрено стандартом, распределяется по всем содержательным линиям. В нее включены вопросы по поиску (сбору) и представлению различной информации, связанной со счетом предметов и измерением величин. Наиболее явно необходимость в таком виде деятельности проявляется в процессе работы над практическими задачами (по всему курсу), задачами с геометрическими величинами (по всему курсу) и задачами с недостающими данными (3 класс, 1 часть и далее). Фиксирование результатов сбора предполагается осуществлять в любой удобной форме: в виде текста (протокола), с помощью табулирования, графического представления.

        Особое место при работе с информацией отводится таблице. Уже в 1 классе учащиеся знакомятся с записью имеющейся информации в виде таблицы (речь идет о «Таблице сложения»), и осознают удобство такого представления информации. При этом учащиеся принимают непосредственное участие в построении такой таблицы. Во 2 классе эта работа продолжается очень активно. Наряду с построением и использованием «Таблицы умножения» учащиеся знакомятся с возможностью использовать таблицу для осуществления краткой записи текстовой задачи. Они учатся читать готовые таблицы и заполнять таблицы полученными данными.

        Наряду с заданиями, в которых работа с таблицей носит очень важный, но все же вспомогательный характер, предусмотрены и специальные задания по работе с таблицами (см. соответствующее приложение).

                Алгебраический материал в настоящем курсе не образует самостоятельной содержательной линии в силу двух основных причин: во-первых, этот материал, согласно требованиям нового стандарта, представлен в содержании курса в очень небольшом объеме (в явном виде лишь в тех вопросах, которые касаются нахождения неизвестного компонента арифметического действия), а во-вторых, его направленность главным образом носит пропедевтический характер. Однако мы считаем, что по той роли, которая отводится этому материалу в плане дальнейшего успешного изучения курса математики, он вполне мог бы быть представлен более широко и мог бы претендовать на образование самостоятельной содержательной линии.

        Новизна рабочей программы в том, что в отличие от примерной/типовой программы и авторской программы, в данной программе отводится 2 часа на диагностические и 1 контрольную работы. Один из приоритетных методов контроля – тестирование.

Формы диагностики уровня знаний, умений и навыков

1 четверть

2 четверть

3 четверть

4 четверть

Итого

Диагностическая работа

2

2

Контрольные работы

1

1

Формы реализации программы:

- фронтальная;

- парная;

- групповая;

- индивидуальная.

Методы реализации программы:

- практический;

- объяснительно – иллюстративный;

- частично – поисковый;

- исследовательский;

- наблюдение;

- проблемно – поисковый

Способы и средства:

- модели и таблицы;

- технические средства;

- рисунки;

- дидактические материалы;

-технологии: информационные (ИКТ), тестовые, здоровьесбережение,  деятельностный подход.

Требования к личностным, метапредметным, предметным результатам

Планируемые результаты освоения учебной программы по предмету

«Математика» к концу 1-го года обучения

        Обучающиеся научатся:

• читать и записывать все однозначные числа и числа второго десятка, включая число 20;

• вести счет как в прямом, так и в обратном порядке (от 0 до 20);

• сравнивать изученные числа и записывать результат сравнения с помощью знаков (>, <, =);

• записывать действия сложения и вычитания, используя соответствующие знаки (+, –);

• употреблять термины, связанные с действиями сложения и вычитания (плюс, сумма, слагаемые, значение суммы; минус, разность, уменьшаемое, вычитаемое, значение разности);

• пользоваться справочной таблицей сложения однозначных чисел;

• воспроизводить и применять табличные случаи сложения и вычитания;

• применять переместительное свойство сложения;

• применять правила прибавления числа к сумме и суммы к числу;

• выполнять сложение на основе способа прибавления по частям;

• применять правила вычитания числа из суммы и суммы из числа;

• выполнять вычитание на основе способа вычитания по частям;

• применять правила сложения и вычитания с нулем;

• понимать и использовать взаимосвязь сложения и вычитания;

• выполнять сложение и вычитание однозначных чисел без перехода через десяток;

• выполнять сложение однозначных чисел с переходом через десяток и вычитание в пределах таблицы сложения, используя данную таблицу в качестве справочника;

• распознавать на чертеже и изображать точку, прямую, отрезок, ломаную, кривую линию, дугу, замкнутую и незамкнутую линии; употреблять соответствующие термины; употреблять термин «точка пересечения»;

• распознавать в окружающих предметах или их частях плоские геометрические фигуры (треугольник, четырехугольник, прямоугольник, многоугольник, круг);

• чертить с помощью линейки прямые, отрезки, ломаные, многоугольники;

• определять длину данного отрезка (в сантиметрах) при помощи измерительной линейки;

• строить отрезки заданной длины при помощи измерительной линейки;

• находить значения сумм и разностей отрезков данной длины при помощи измерительной линейки и с помощью вычислений;

• выражать длину отрезка, используя разные единицы длины (например, 1 дм 6 см и 16 см);

• распознавать симметричные фигуры и изображения;

• распознавать и формулировать простые задачи;

• употреблять термины, связанные с понятием «задача» (формулировка, условие, требование (вопрос), решение, ответ);

• составлять задачи по рисунку и делать иллюстрации (схематические) к тексту задачи;

• выявлять признаки предметов и событий, которые могут быть описаны терминами, относящимися к соответствующим величинам (длиннее-короче, дальше-ближе, тяжелее-легче, раньше-позже, дороже-дешевле);

• использовать названия частей суток, дней недели, месяцев, времен года.

        Обучающиеся получат возможность научиться:

• понимать количественный и порядковый смысл числа;

• понимать и распознавать количественный смысл сложения и вычитания;

• воспроизводить переместительное свойство сложения;

• воспроизводить правила прибавления числа к сумме и суммы к числу; вычитания числа из суммы и суммы из числа;

• воспроизводить правила сложения и вычитания с нулем;

• использовать «инструментальную» таблицу сложения для выполнения сложения однозначных чисел и соответствующих случаев вычитания;

• устанавливать взаимное расположение прямых, кривых линий, прямой и кривой линии на плоскости;

• понимать и использовать термин «точка пересечения»;

• строить (достраивать) симметричные изображения, используя клетчатую бумагу;

• описывать упорядоченные множества с помощью соответствующих терминов (первый, последний, следующий, предшествующий);

• понимать суточную и годовую цикличность;

• представлять информацию в таблице.

Содержание учебного предмета

1 класс (132 ч)

Числа и величины (28 ч)

        Числа и цифры.

        Первичные количественные представления: один и несколько, один и ни одного. Числа и цифры от 1 до 9. Первый, второй, третий и т. д. Счет предметов. Число и цифра 0. Сравнение групп предметов по количеству: больше, меньше, столько же. Сравнение чисел: знаки >, <, =. Однозначные числа. Десяток. Число 10. Счет десятками. Десяток и единицы. Двузначные числа. Разрядные слагаемые. Числа от 11 до 20, их запись и названия.

        Величины.

        Сравнение предметов по некоторой величине без ее измерения: выше-ниже, шире-уже, длиннее-короче, старше-моложе, тяжелее-легче. Отношение «дороже-дешевле» как обобщение сравнений предметов по разным величинам.

        Первичные временные представления: части суток, времена года, раньше-позже, продолжительность (длиннее-короче по времени). Понятие о суточной и годовой цикличности: аналогия с движением по кругу.

Арифметические действия (48 ч)

        Сложение и вычитание.

        Сложение чисел. Знак «плюс» (+). Слагаемые, сумма и ее значение. Прибавление числа 1 и по 1. Аддитивный состав чисел 3, 4 и 5. Прибавление чисел 3, 4, 5 на основе их состава. Вычитание чисел. Знак «минус» (–). Уменьшаемое, вычитаемое, разность и ее значение. Вычитание числа 1 и по 1. Переместительное свойство сложения. Взаимосвязь сложения и вычитания. Табличные случаи сложения и вычитания. Случаи сложения и вычитания с 0. Группировка слагаемых. Скобки. Прибавление числа к сумме. Поразрядное сложение единиц. Прибавление суммы к числу. Способ сложения по частям на основе удобных слагаемых. Вычитание разрядного слагаемого. Вычитание числа из суммы. Поразрядное вычитание единиц без заимствования десятка. Увеличение (уменьшение) числа на некоторое число. Разностное сравнение чисел. Вычитание суммы из числа. Способ вычитания по частям на основе удобных слагаемых.

        Сложение и вычитание длин.

Текстовые задачи (12 ч)

        Знакомство с формулировкой арифметической текстовой (сюжетной) задачи: условие и вопрос (требование). Распознавание и составление сюжетных арифметических задач. Нахождение и запись решения задачи в виде числового выражения. Вычисление и запись ответа задачи в виде значения выражения с соответствующим наименованием.

Пространственные отношения. Геометрические фигуры (28 ч)

        Признаки предметов. Расположение предметов.

        Отличие предметов по цвету, форме, величине (размеру). Сравнение предметов по величине (размеру): больше, меньше, такой же. Установление идентичности предметов по одному или нескольким признакам. Объединение предметов в группу по общему признаку. Расположение предметов слева, справа, вверху, внизу по отношению к наблюдателю, их комбинация. Расположение предметов над (под) чем-то, левее (правее) чего-либо, между одним и другим. Спереди (сзади) по направлению движения. Направление движения налево (направо), вверх (вниз). Расположение предметов по порядку: установление первого и последнего, следующего и предшествующего (если они существуют).

        Геометрические фигуры и их свойства.

        Первичные представления об отличии плоских и искривленных поверхностей. Знакомство с плоскими геометрическими фигурами: кругом, треугольником, прямоугольником. Распознавание формы данных геометрических фигур в реальных предметах. Прямые и кривые линии. Точка. Отрезок. Дуга. Пересекающиеся и непересекающиеся линии. Точка пересечения. Ломаная линия. Замкнутые и незамкнутые линии. Замкнутая линия как граница области. Внутренняя и внешняя области по отношению к границе. Замкнутая ломаная линия. Многоугольник. Четырехугольник. Симметричные фигуры.

Геометрические величины (10 ч)

        Первичные представления о длине пути и расстоянии. Их сравнение на основе понятий «дальше-ближе» и «длиннее-короче». Длина отрезка. Измерение длины. Сантиметр как единица длины. Дециметр как более крупная единица длины. Соотношение между дециметром и сантиметром (1 дм = 10 см). Сравнение длин на основе их измерения.

Работа с данными (6 ч)

        Таблица сложения однозначных чисел (кроме 0). Чтение и заполнение строк, столбцов таблицы. Представление информации в таблице. Таблица сложения как инструмент выполнения действия сложения над однозначными числами.

Учебно-тематический план

№ п/п

Раздел программы

Кол-во часов

Четверти

1

2

3

4

Признаки предметов. Расположение предметов в окружающем пространстве

10 ч.

10 ч.

-

-

-

Геометрические фигуры и их свойства

18 ч.

18 ч.

-

-

-

Числа и цифры

28 ч.

6 ч.

22 ч.

Сложение и вычитание

48 ч.

-

7 ч.

37 ч

4 ч

Величины и их измерение

18 ч.

-

 

 

18 ч.

Арифметическая сюжетная задача

10 ч.

10 ч.

ИТОГО:

132 ч.

34 ч.

29 ч.

37 ч.

32 ч.

Материально-техническое обеспечение образовательного процесса

Концептуальные и теоретические основы УМК «Перспективная начальная школа»

  1. Чуракова Р.Г. Пространство натяжения смысла в учебно-методическом комплекте "Перспективная начальная школа" (Концептуальные основы личностно-ориентированной постразвивающей системы воспитания и обучения).– М.: Академкнига/Учебник.
  2. Чуракова Р.Г. Технология и аспектный анализ современного урока в начальной школе. – М.: Академкнига/Учебник.
  3. Проектирование основной образовательной программы образовательного учреждения/ Под ред. Р.Г. Чураковой - М.: Академкнига/Учебник.

Календарно – тематическое планирование

Предмет   математика

Класс  1г

Учитель     Демченко Наталья Сергеевна

Количество часов:     всего 132 ч.;        в неделю 4 часа

Контрольных работ:        I полугодие  -    

                                II полугодие  -  2

Планирование составлено на основе:

1. Федеральный компонент государственного стандарта общего образования. Начальное        общее образование. // Министерство образования Российской Федерации. Сборник    нормативно-правовых документов и методических материалов. Начальная школа. М.,: «Вентана-Граф», 2009г. С.34-37.

2. Примерные программы начального общего образования. // Министерство образования Российской Федерации. Сборник нормативно-правовых документов и методических материалов. Начальная школа. М.,: «Вентана-Граф», 2008г. С.137-143.

3. Образовательная система «Перспективная начальная школа». Рабочие программы. 1          класс. / автор-составитель Н.В. Лободина. – Волгоград: Учитель, 2012. – 327 с.

4. Чекин, А. Л. Математика : 1 класс : учебник : в 2 ч. / А. Л. Чекин ; под ред. Р. Г. Чураковой. – М. : Академкнига/Учебник, 2012;

5.Юдина, Е. П. Математика в вопросах и заданиях : 1 класс : тетрадь для самостоятельной работы № 1, 2 / Е. П. Юдина ; под ред. Р. Г. Чураковой. – М. : Академкнига/Учебник, 2012;

6.Чекин, А. Л. Математика : 1 класс : методическое пособие для учителя. – М. : Академкнига/Учебник, 2011.

7. Чекин, А.Л., Математика. 1 класс: поурочные планы по учебнику./авт.-сост. Н.В.Лободина. - Волгоград: Учитель, 2011.


По теме: методические разработки, презентации и конспекты

Рабочая программапо русскомуязыку УМК "Перспективная начальная школа"

Рабочая программа по русскому языку УМК "Перспективная начальная школа"  включает в себя предметн...

Рабочая программапо окружаещему миру 4 класс.УМК"Школа России"

УМК "Школа России".Рабочая программа ,календарно-тематическое планирование....

Рабочая программапо обучению грамоте (чтение)

Рабочая программа по курсу "Обучение граммоте" разработана на основе Концепции стандарта второго поколения, с учётом авторской программы Н.В.Нечаевой. Программа охватывает добукварный и букварный пери...

рабочая программапо физической культуре

рабочая программа по физической культуре 1 класс...

рабочая программапо физической культуре 3

рабочая программа по физической культуре...

Рабочая программапо курсу «В гостях у сказки» 3 класс

Рабочая программа внеурочной деятельности по духовно – нравственному направлению  «В гостях у сказки» составлена в соответствии с требованиями федерального государственного образовательного станд...

Рабочая программапо Кубановедение

Рабочая программа по Кубановедению составлена в соответствии с требованиями ФГОС НОО. Программа может быть использованна в образовательных учреждениях, возраст учащихся 6,5 - 11 лет....