Мониторинг качества знаний учащихся через тестирование обучающихся
методическая разработка на тему

Петрова Елена Вячеславовна

Мониторинг  качества знаний учащихся  через тестирование обучающихся

Скачать:


Предварительный просмотр:

  Мониторинг  качества знаний учащихся  через тестирование обучающихся

Петрова Елена Вячеславовна

заместитель директора

по воспитательной  работе,

преподаватель математики.

 

В современном мире не достаточно обладать знаниями, необходимо уметь их применять в профессиональной деятельности. Требования рынка труда указывают на необходимость совершенствования образования. Приоритетным  результатом  образовательного процесса является умение учащегося применять полученные научные  знания, а при необходимости самостоятельно расширять и углублять их, пользоваться информационным потоком.  Важным аспектом такого образования является систематический контроль, анализ и синтез результатов обучения каждого учащегося. Сбор информации, ее обработка должны проводиться комплексно и оперативно. Кроме этого необходимо постоянно следить за изменениями результатов, сравнивать их с начальными показателями. Только такая система может дать возможность своевременно внести коррективы в обучение учащегося и получить положительную динамику в усвоении материала и формировании личности. Это возможно,  если использовать мониторинг знаний не для отчетности, а для совершенствования способностей учащегося и развития педагогического мастерства. Отрицательная динамика успеваемости ребенка не всегда связана с умственными способностями. Иногда, особенно в период подросткового  возраста, на это могут повлиять какие-то стрессовые ситуации, разногласия с родителями, неверное оценивание своих возможностей, мнение одноклассников и  многое другое.  Система постоянного мониторинга успешности учащегося на ранней стадии сигнализирует о зарождении  отрицательных результатов в его деятельности. И в этот момент необходима психолого-педагогическая  помощь в изучении предмета и решении создавшихся жизненных ситуаций. Мониторинг успеваемости учащихся является  способом управления и корректировки образовательного процесса. Систематизированный контроль успехов учащихся, анализ изменений показателей качества знаний является основой педагогической деятельности преподавателя.

Мониторинг качества знаний особенно важен в системе профессионального образования, ведь учащиеся НПО и СПО кроме общеобразовательных предметов изучают предметы,  которые влияют на уровень подготовки специалиста. Информацию мониторинга можно фиксировать различными способами: баллами, процентом качества успешности по предмету, таблицей рейтинга  и т.д.

Можно  применять различную периодичность проведения мониторинга, например использование  результатов полугодий.  Такой способ малоэффективен, временными рамками он ограничивает  возможности корректировки образовательного процесса для повышения уровня знаний  и практически не дает высоких результатов.

Мониторинг успеваемости с меньшим периодом – это результаты  контрольных работ, зачетов, тестов на  различных этапах изучаемой темы, математических диктантов дают расширенную и подробную информацию об образовательных  способностях учащегося.

Показатели мониторинга желательно представлять учащимся в корректной форме и грамотном  оформлении,  например в виде графика. Практично  оформление стенда  «Наши достижения», где  показан мониторинг успеваемости в виде диаграмм  или таблиц. С помощью графика легко проследить уровень знаний каждого учащегося и всей группы. Это порождает здоровую конкуренцию,  как среди учащихся группы, так и между учебными группами. Для того  чтобы вести мониторинг успеваемости, следует создать его схему,  в которой преподаватель учитывает все аспекты (сложность, творчество, практичность, научность, степень важности) изучаемого материала.

Во время проектирования мониторинга успеваемости по математике,  необходимо  создать фонд оценочных средств. При этом учитываются временные рамки и разнообразие методов и форм опроса. Чаще всего используется тестирование (программированный контроль) и математический диктант.

Тестирование можно проводить в электронном виде с помощью системы тестирования  или по карточкам – заданиям.

Для проведения теста по карточкам учащимся выдаются  матрицы с предлагаемыми заданиями и несколькими вариантами ответов.

В результате решения учащиеся получают  код (который состоит из цифр или букв  выбранных ответов). После выполнения теста, работы сдаются и учащимся на доске показывают правильный код теста. Такие тесты удобны тем, что их проверка мобильна и используется самоконтроль, то есть учащиеся сами выставляют себе оценки (критерии оценок представляются вместе с кодом теста)

Этот тест можно давать и в электронном виде.

Пример 1

Задание

Варианты ответа

Вариант 1

Вариант 2

1

2

3

4

Найти производную функции:

f(x)= sin2x-cos3x

f(x)= cos2x-sin3x

cos2x-sin3x

2sin3x-3cos3x

-2sin2x-3cos3x

2cos2x+3sin3x

Найти значение производной функции:

f(x)=(2x+3)12

f(x)=(5+6x)10

-52

-60

30

-24

Составить сложную функцию: а)   f(g(x))        б)   g(f(x))

а)  

б)  

а)    

б)  

а)    

б)  

а)  

б)  

Найти производную функции:

f(x)=sin2x

f(x)=cos2x

2sinxcosx

-2sin2x

sin2x

2cosx

Код первого варианта: 44233

Код второго варианта: 32422

Критерии оценки:

 Результат оценивается суммарно по пятибалльной системе

Каждое задание – 1 балл

               В тестах для контроля теоретических знаний вопросы можно составить таким образом, чтобы ответ учащихся выражался в одной фразе «Да» или «Нет». В данном тесте ответ обозначен буквой. После выполнения заданий, тесты сдаются преподавателю. У учащихся остаются записи номера задания и ответ.

На интерактивной доске предлагается таблица с указанными номерами клеток (номер клетки соответствует номеру карточки). Учащиеся вписывают в соответствующие клетки буквы. В результате получается фраза. Для проверки решения проводится  сверка полученной фразы с эталоном.

Пример 2

Тест: Верно, ли дана формулировка  теоремам и аксиомам?

Карточка  Т.1

  1. Через три точки,  не лежащие на одной прямой можно провести плоскость и притом только одну

№ карточки

Т.1-№1

Т.1-№10

Т.1-№19

Т.1-№28

Т.1-№37

Т.1-№46

Т.1-№55

Т.1-№64

ДА

Д

Р

У

А

Н

А

М

Ч

НЕТ

К

С

О

Я

М

О

Н

Щ

  1. Какова бы ни была плоскость, существуют точки, принадлежащие этой плоскости

№ карточки

Т.1-№2

Т.1-№11

Т.1-№20

Т.1-№29

Т.1-№38

Т.1-№47

Т.1-№56

Т.1-№66

ДА

А

Ы

М

Н

Ё

К

Е

Ю

НЕТ

О

О

С

М

И

Т

Ы

И

Карточка  Т.2

  1. Если две различные прямые имеют общую точку, то через них можно провести плоскость и притом только одну

№ карточки

Т.2-№3

Т.2-№13

Т.2-№21

Т.2-№31

Т.2-№39

Т.2-№48

Т.2-№58

Т.2-№67

ДА

Б

Д

П

В

И

И

В

Л

НЕТ

К

П

С

Р

Е

Е

Л

Ф

  1. Плоскость и не лежащая на ней прямая либо не пересекается, либо пересекается

№ карточки

Т.2-№4

Т.2-№14

Т.2-№22

Т.2-№32

Т.2-№41

Т.2-№49

Т.2-№59

Т.2-№68

ДА

Х

П

У

В

Г

Т

Ц

О

НЕТ

Р

Р

Е

П

М

К

С

И

Карточка  Т.3

  1. Если две точки прямой принадлежат плоскости, то вся прямая принадлежит этой плоскости

№ карточки

Т.2-№5

Т.2-№15

Т.2-№23

Т.2-№33

Т.2-№42

Т.2-№50

Т.2-№60

ДА

О

У

Х

О

А

И

Ё

НЕТ

Ю

Е

Л

Ю

О

У

Ю

  1. Если две различные плоскости имеют общую прямую, то они пересекаются по этой прямой

№ карточки

Т.2-№6

Т.2-№16

Т.2-№24

Т.2-№34

Т.2-№43

Т.2-№51

Т.2-№61

ДА

И

В

Ю

К

С

О

Г

НЕТ

Е

З

О

З

Т

У

В

Карточка  Т.4

  1. Через прямую и не лежащую на ней точку можно провести плоскость

№ карточки

Т.2-№8

Т.2-№17

Т.2-№25

Т.2-№35

Т.2-№44

Т.2-№52

Т.2-№62

ДА

О

Б

Ж

З

И

Ъ

Ю

НЕТ

У

Ь

В

Н

Е

Р

Ы

  1. Аксиома это утверждение не требующая доказательства

№ карточки

Т.2-№9

Т.2-№18

Т.2-№27

Т.2-№36

Т.2-№45

Т.2-№54

Т.2-№63

ДА

Т

Я

В

А

М

А

У

НЕТ

С

О

Г

Ю

Н

Е

О

Данный тест составлен из вопросов для четырех вариантов, но в каждом варианте содержится несколько комбинаций  ответов. Для одного учащегося дается тест,  в котором две карточки.

Карточка  Т.2

  1. Если две различные прямые имеют общую точку, то через них можно провести плоскость и притом только одну

№ карточки

Т.2-№3

ДА

Б

НЕТ

К

  1. Плоскость и не лежащая на ней прямая либо не пересекается, либо пересекается

№ карточки

Т.2-№4

ДА

Х

НЕТ

Р

 Так же можно давать дополнительные карточки, с учетом способностей учащихся.  

№1

№2

№3

№4

№5

№6

№7

№8

№9

№10

№11

№12

№13

№14

№15

№16

№17

№18

№19

№20

№21

№22

№23

№24

№25

№26

№27

№28

№29

№30

№31

№32

№33

№34

№35

№36

№37

№38

№39

№40

№41

№42

№43

№44

№45

№46

№47

№48

№49

№50

№51

№52

№53

№54

№55

№56

№57

№58

№59

№60

№61

№62

№63

№64

№65

№66

№67

№68

 

При заполнении таблицы  получается фраза:

«Доброе утро друзья

Успехов вам в познании

математики

Мы всё выучили ура»

В пустых клетках предлагается расставить знаки препинания, которые  будут зависеть от результата выполненной работы (если ошибок нет, то проставляем восклицание, а если ошибки, то вопрос или повествование).

По набору букв и разному расположению номеров в таблице можно составить любые варианты фраз.

Результаты тестов используются  для мониторинга качества успеваемости учащихся.

Использование мониторинга в образовательном процессе дает прозрачность успеваемости по отдельным предметам и общую картину развития образовательных компетенций учащегося. Это позволяет не только контролировать качество успеваемости, но и выявлять причины изменений, своевременно оказывать педагогическую и психологическую помощь учащимся.


По теме: методические разработки, презентации и конспекты

Тестирование обучающихся по предмету физическая культура

В образовательной области « Физическая культура» есть раздел для изучения «Основы знаний», где изучается теоретический материал по предмету. В своей педагогической деятельности наше ШМО применяет тест...

Система тестирования обучающихся на соответствие юношеским разрядам по русским шашкам

Разработанная система представленных тестов предназначена для проверки знаний обладателей юношеских разрядов по русским шашкам, а также претендентов на данные разряды....

Тестирование обучающихся 10 класса по теме "Население"

Тестирование по теме "Население" выполнено в форме презентации...

«Технология использования новых средств ИКТ, при создании и проведении компьютерного тестирования, для оперативной проверки качества знаний практических умений обучающихся.»

Методическая разработка отражает принципиально новые подходы к разработке контрольно-измерительных материалов для оперативной проверки качества знаний обучающихся с возможностью машинного ввода ответо...

Тестирование на проверку знаний и умений обучающихся по картонажно-переплетному делу в 6 классе

Тестовые вопросы для проверки знаний и умений у обучающихся 6 класса по картонажно-переплетному делу в конце каждой четверти...

Тестирование на проверку знаний и умений обучающихся по картонажно-переплетному делу в 5 классе

Тестирование на проверку знаний и умений обучающихся 5 класса по картонажно-переплетному делу в конце каждой четверти...