Работа по выявлению и развитию математических способностей учащихся
учебно-методический материал
В данном материале рассматриваются методики выявления способностей к математике на уроках и во внеурочной деятельности
Скачать:
Вложение | Размер |
---|---|
rabota_po_vyyavleniyu_i_razvitiyu_sposobnostey_uchashchihsya.docx | 30.85 КБ |
Предварительный просмотр:
Методики выявления и развития математической одаренности учащихся
на уроках и во внеурочной деятельности
Проблема отбора лиц со способностями к математике является актуальной во всем мире ввиду широкой математизации различных отраслей науки и практики. Поэтому очень важной является задача диагностики и развития математических способностей обучающихся в массовой школе. В своей работе я рассматриваю эту задачу как прикладную, заключающуюся в применении принципов и методик диагностирования и развития математических способностей у средних и старших школьников. Главной задачей обучения математике, как мне кажется, становится не изучение основ математической науки как таковой, а формирование в процессе изучения математики качеств мышления, необходимых для жизни человека в современном обществе, ведь мы учимся «не для школы, а для жизни».
В науке выделяются две основные тенденции в изучении математической одаренности и способностей. Первая состоит в том, что в математических способностях и специальной математической одаренности пытаются выделить множество более частных способностей и изучить их в отдельности. Сторонником этого подхода является В.А.Крутецкий и его последователи. С другой стороны существует тенденция найти в математической одаренности и способностях первооснову, в качестве которой выделяется либо общий фактор интеллекта (И.Вердерлин), либо скоростной фактор переработки информации (Г.Айзенк, Л.Т.Ямпольский), либо хороший уровень мышления вообще и математическая интуиция (Н.В.Метельский) в частности. А.Н.Колмогоров называл математические способности «интегральными качествами ума». Последним теоретическим построением является четырехмерная модель интеллектуального диапазона, вершиной которой является формально-знаковый интеллект, формирующийся в последнюю очередь, который собственно и обеспечивает продуктивность математической деятельности.
Диагностика математических способностей наиболее актуальна на сегодняшний день при изучении одаренности детей. Во первых, математика одна из наиболее древних наук, является неотъемлемой частью человеческой культуры, и овладение ее основами или элементами — жизненная задача каждого человека. Вторая причина состоит в том, что для овладения математическим материалом и успешного решения математических задач требуется высокий уровень развития абстрактного мышления».
Вот одно из определений математической способности: «Математическая способность рассматривается как свойство психологической функциональной системы деятельности (математической деятельности), а отдельные элементарные способности как свойства систем, ответственных за протекание познавательных процессов».
Таким образом, можно сделать следующий вывод: математические способности не сводятся к общему интеллекту, а представляют собой свойство системы познавательных процессов, проявляющееся в эффективном решении сложных познавательных задач, решение которых требует умственных операций с пространственным и символическим материалом без опоры на наглядность.
Целью моей работы является обобщение и распространение опыта работы с одарёнными детьми в использовании диагностических знаний, методик и тестов по выявлению и развитию математической одаренности на уроках математики и во внеурочной деятельности.
Диагностический пакет.
1. Тест математических аналогий - «Задачи Гайштута» (ТМА)
Цель: тест может быть использован для диагностики уровня развития общего интеллекта и математических способностей.
Тест обладает достаточной внутренней и внешней валидностью. Успешность выполнения теста связана с уровнем развития способности к мысленному решению задач, понятийного и пространственного мышления. Тест следует испытывать, при проведении контрольных и самостоятельных работ, так как он стандартизирован в этих ситуациях. Следует избегать включения теста в экзаменационные работы. ТМА следует применять после прохождения соответствующего учебного материала, т. е. в конце года (4, 5, 6 классы) или 2-х лет обучения (7—8, 9—10 классы).
Задачи, предложенные А. Г. Гайштутом, сформулированы на основе материала из курса математики с 4 по 10 класс и состоят из 5 серий: 4 класс, 5 класс, 6—7 класс, 8 класс, 9—10 класс. Решение задач каждого типа предполагает знание учебного материала, но помимо того способность к мысленному обнаружению отношений между пространственными и знаковыми элементами условий задачи и умения производить математические операции с математическими структурами. Задачи теста обладают высокой однородностью. Если испытуемые решат больше 5 заданий, можно считать, что они обладают высоким уровнем развития способности мыслить аналогиями. Если меньше, то не следует ставить определенного диагноза. Необходимо провести через некоторое время повторное обследование и использовать в качестве дополнения другие аналогичные тесты.
2. Тест на выявление одаренности в той или иной области В.А.Крутецкого
Цель: Психологический тест предназначен для определения коэффициента математического интеллекта у детей подросткового, юношеского возраста и взрослых (от 14 до 50 лет). Общие способности позволяют обеспечить сравнительную легкость и продуктивность при получении знаний и в различных видах деятельности, их можно обозначить как одаренность. А вот специфические различия в одаренности проявляются в направлении интересов учащихся, почему одних интересует математика, других музыка, третьих литература и т.д. Тест содержит 25 заданий, требующих математических вычислений, понимания простых математических правил, логического мышления. В каждом задании испытуемые должны выбирать правильный ответ из четырех вариантов. Длительность теста составляет 15 минут.
Каждый правильный ответ оценивается одним баллом. Коэффициент математического интеллекта определяется с помощью специальной оценочной таблицы. Шкальная оценка имеет шесть градаций:
3. Методика изучения индивидуальных особенностей решения задач.
Цель: Изучение основных индивидуальных особенностей решения задач у школьников старших классов и взрослых (быстроты решения, интеллектуальной активности, выражающейся в целенаправленном нахождении наиболее рациональных путей решения задачи (в противоположность методу "проб и ошибок", качества решения).
Материалы: Бланки для решения, протокол эксперимента. Квадраты для усвоения условий решения задачи
| 4 | 3 | 1 | 2 | 5 |
2 | 8 |
|
|
|
|
5 |
|
|
| 10
|
|
3 |
|
| 3
|
| 15
|
4 |
|
|
|
|
|
1 |
| 3
|
|
|
|
Сумма =39
Предлагаемые суммы находятся в промежутке от 39 до 51. Инструкция зачитывается столько раз, сколько необходимо для полного усвоения всех условий задачи. В 2-х квадратах испытуемые решают задачу без учета времени, с целью твердо усвоить условия задачи и опробовать варианты, пути ее решения. Далее испытуемый предлагает решить задачи на 2-х квадратах с учетом времени. Решения проверяются самими испытуемыми. Кроме времени выполнения заданий учитывается число исправлений (зачеркивания и пробные, поисковые обозначения) и число ошибок (неверный подбор сумм, неправильно поставленные произведения, использование 2-х клеток более чем в одной строке или в одном столбце). В сводный протокол вносятся среднее арифметическое каждого из двух решений и среднее арифметическое по группе испытуемых. Индивидуальные данные сравниваются с групповыми. Делаются заключения об индивидуальных особенностях решения задач. При этом учитывается, что: 1) время решения задач является показателем скорости протекания мыслительных процессов; 2) число исправлений служит показателем интеллектуальной активности. Чем меньше число исправлений, тем глубже анализ предлагаемых условий задачи и правильное построение в уме схемы предлагаемой совокупности действий. Большое число исправлений свидетельствует о том, что условия были недостаточно проанализированы, комбинаторное планирование осуществлялось слабо и, что задание выполнялось в основном путем "проб и ошибок"; 3) ошибки определяют качественную сторону интеллектуальной деятельности.
4. Психологический тест "Аналитические математические способности. (АМС)
Цель: Данный психологический тест предназначен для диагностики аналитических математических способностей, для индивидуальной и групповой диагностики. Методику можно применять и в школьной психологии при анализе математических способностей обучающихся, и в процессе профотбора на профессии, требующие хорошо развитых математических и аналитических способностей: разного рода аналитики, экономисты и др. Аналитические математические способности относятся к академическим. То есть в первую очередь они позволяют человеку лучше усваивать учебный материал, в данном случае - математику. Аналитические математические способности тесно коррелируют с показателем IQ, и поэтому большинство тестов на IQ включают в себя субтесты на определение закономерностей в числовых рядах. Обладатели высоких показателей по аналитическим математическим способностям проявляют способности к анализу не только в области математики, но и в иных разнородных проблемах. Обладатели низких показателей по данному качеству не проявляют ни способностей, ни склонностей к анализу, зачастую совершают неоправданно легкомысленные поступки. Стимульный материал теста состоит из двадцати числовых рядов. Каждый ряд включает в себя десять чисел, находящихся в определённой взаимосвязи между собой. Одно из десяти чисел пропущено (отмечено троеточием). В задачу испытуемого входит найти это пропущенное число. Время прохождения теста: 15 минут. Запрещается пользоваться калькулятором и делать какие-то вспомогательные записи. Методика имеет четыре разные формы (А, Б, В и Г).
Ссылки на интернет-источники, содержащие методики
и тестирование он-лайн:
1. http://imz.ucoz.ru/seminar/Cirkova/odarennie/model_diagnostiki.doc Методика для изучения социализированности личности учащегося (М.И.Рожков) Портфолио личностного развития. Диагностика общей одаренности. Художественная направленность Предметно-практическая направленность Техническая направленность.
2. http://psy.1september.ru Психодиагностика творческого мышления Елены Туник.
3. http://zadacha.uanet.biz/home/matematika/matematika-5-11-klass/uchebniki-i-uchebnye Гайштут и его друзья.
4. http://testoteka.narod.ru/pozn/1/02.html «Каков Ваш творческий потенциал».
5. http://psy.1september.ru Опросник креативности Рензулли.
6. http://www.voppsy.ru/issues/1991/915/915152.htm Журнал «Вопросы психологии» экспериментальные исследования / Адаптация мюнхенских тестов познавательных способностей для одаренных учащихся. И. С. Аверина, Е. И. Щебланова, К. Перлет.
7.feshttp://www.syntone.ru/library/books/content/2620.html?current_book_page=all/ Синтон – тренинг центр/ Дружинин В. ПСИХОЛОГИЯ ОБЩИХ СПОСОБНОСТЕЙ.
8.http://www.erudition.ru ЭРУДИЦИЯ Российская электронная библиотека/
9.http://vikent.ru/enc/2722/ПРИНЦИПЫ ТВОРЧЕСТВА/ Математическая одаренность по А.Н. Колмогорову.
По теме: методические разработки, презентации и конспекты
План работы по выявлению и развитию физических способностей учащихся
Цель: создать условия для выявления, поддержки и развития одаренных детей, их самореализации, профессионального самоопределения в соответствии со способностямиЗадача:- развитие основных физи...
План работы по выявлению и развитию физических способностей учащихся.
Система по отбору и выявлению у обучающихся способностей к физкультурно-спортивной деятельностиОсновные задачи этапа отбораОсновные методы отбораПредварительный этап выявления способностей1.Педагогиче...
Работа по выявлению и развитию творческих способностей у учащихся
Работа по выявлению и развитию творческих способностей у учащихся...
Работа по выявлению и развитию математических способностей учащихся.
Работа по выявлению и развитию математических способностей учащихся....
Работа по выявлению и развитию творческих способностей учащихся на уроках русского языка и литературы
Каждый ребенок таланлив. Как разбудить его задатки и способности? Работа по выявлению и развитию творческих способностей учащихся приносит свои плоды при условии, если учитель ...
Работа по выявлению и развитию математических способностей обучающихся
Ведущая педагогическая идея опыта – создание оптимальных условий для развития творческого мышления, высокого уровня творческой самостоятельной деятельности, формирование исследовательских умений...