Описание педагогического опыта, 2019 год
статья

Пряхина Галина Владимировна

 «Основная задача обучения математики в школе – обеспечить прочное и сознательное овладение обучающимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену современного общества, достаточных для изучения смежных дисциплин и продолжения образования», - говорится в объяснительной записке программы по математике. Но в последние годы много и часто говорят о недостаточной эффективности процесса обучения в школе.

Скачать:

ВложениеРазмер
Microsoft Office document icon predstavlenie_pryahina.doc108.5 КБ

Предварительный просмотр:

Публичное представление

собственного инновационного педагогического опыта

учителя математики ОСП «Шокшинская средняя общеобразовательная школа имени Героя Советского Союза И.С.Пряхина» МБОУ «Теньгушевская средняя общеобразовательная школа» Теньгушевского района

Пряхиной Галины  Владимировны

ТЕМА: Решение занимательных задач – один из путей    активизации

                    творческой деятельности учащихся.

  1. Условия возникновения и становления опыта.

«Основная задача обучения математики в школе – обеспечить прочное и сознательное овладение обучающимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену современного общества, достаточных для изучения смежных дисциплин и продолжения образования», - говорится в объяснительной записке программы по математике. Но в последние годы много и часто говорят о недостаточной эффективности процесса обучения в школе.

Проблема развития ученика является одной из сложнейших в педагогической практике. Решение этой проблемы зависит от  того, на получение какого именно результата ориентируется учитель в своей работе. Педагогические задачи многофункциональны, но основное содержание педагогической деятельности – обучающийся. Следовательно, критерием деятельности учителя является конечный результат: дать ученику лишь набор знаний по предмету или сформировать личность, готовую к творческой деятельности.

В первом случае не приходится говорить о развитии обучающихся, поскольку ученик получает готовую информацию, запоминает ее, затем воспроизводит, т.е. мы осуществляем репродуктивную деятельность. В этом случае нужны способности к обучению, но это обучение не оказывает существенного влияния  как на общее психологическое развитие детей, так и на развитие их специальных способностей. А именно это  и есть, по определению В.В.Давыдова, развивающее обучение. Поэтому, если школа ставит своей целью развитие ребенка, то конечный результат деятельности учителя – психические новообразования в личности обучающегося. «Сделать учебную работу насколько возможно интересной для ребенка и не превратить эту работу в забаву – одна из труднейших и важнейших задач дидактики», - писал К.Д.Ушинский.

  1. Актуальность и перспективы опыта.

Возникновение интереса к математике у учащихся зависит в большей степени от методики ее преподавания, от того, насколько умело будет построена учебная работа. Надо позаботиться о том, чтобы на уроках каждый ученик работал активно и увлеченно, и использовать это как отправную точку для возникновения и развития любознательности, глубокого познавательного интереса. Это особенно важно в подростковом возрасте, когда еще формируются, а иногда и только определяются постоянные интересы и склонности к тому или иному предмету. Именно в этот период нужно стремиться раскрыть наиболее притягательные и интересные стороны математики.

 Современный учитель должен уметь создавать условия для развития творческих способностей, развивать у учеников стремление к творческому восприятию знаний, учить их самостоятельно мыслить, самостоятельно формулировать вопросы для себя в процессе изучения материала, полнее реализовывать их потребности, поощрять их индивидуальные склонности и дарования, то есть сделать выпускника современной школы конкурентоспособным.

Развитие обучающихся зависит от той деятельности, которую они выполняют в процессе обучения – репродуктивную или продуктивную (творческую). Только тогда, когда учебная деятельность, направленная на овладение основами наук и на развитие личностных качеств, сформирована на более высоком уровне, начинает ясно проявляться ее творческая сторона. Возможности школьников различны, но они должны приводиться в движение для развития творческой деятельности, а вместе с тем и личности ученика. Имеются разные методы: исследовательский, поисковый, метод проблемной ситуации и иное логико-содержательное построение курса. Важно лишь пробудить мыслительный процесс ученика.

Творческая деятельность ученика зависит от наличия трех компонентов мышления:

  • высокий уровень сформированности элементарных мыслительных операций: анализа и синтеза, сравнения и аналогии, классификации;
  • высокий уровень активности и неординарности мышления, которые проявляются в различных вариантах решений и в выдвижении нестандартных идей;
  • высокий уровень организованности и целенаправленности мышления, которые проявляются в умении выделить существенное в явлениях и сознании собственных способов мышления.

Ученик, имеющий названные качества мышления, может преодолеть трудности в овладении учебным материалом и выйти победителем в незнакомых ситуациях. Следовательно, задача учителя сводится к формированию указанных составляющих мышления. Инструментом должны быть занимательные задачи: задачи-головоломки, на соображение и догадку, нестандартные задачи.

  1. Теоретическая база опыта.

Для поддержания и развития интереса к предмету  следует включать в процесс обучения занимательные задачи, без которых, по мнению Н.И.Лобачевского, преподавание не бывает успешным, поскольку занимательность – необходимое средство возбуждать и поддерживать внимание.

Всю занимательность обучения, следуя  К.Д.Ушинскому, принято делить на «внешнюю», не связанную с содержанием урока, и «внутреннюю», причем «внутренняя» занимательность предпочтительнее «внешней». Удельный вес «внутренней» занимательности должен постепенно увеличиваться. Все материалы занимательного характера обычно разбивают на три группы:

  • материалы, занимательные по форме;
  • материалы, занимательные по содержанию;
  • материалы, занимательные по форме и по содержанию.

Основу занимательности на уроках должны составлять задания, непосредственно связанные с программным материалом.

Рассматривать занимательность обучения  только с учетом связи с учебным материалом и без учета воздействия на мыслительную деятельность ученика я считаю нецелесообразным. Поэтому в основу классификации материалов занимательного характера следует заложить:

а) связь с учебным материалом;

б) воздействие на мыслительную деятельность учащихся.

В результате получаем следующее:

- организационную занимательность;

- информационную занимательность;

- внеучебные занятия занимательного характера;

- учебные занимательные задания.

Под организационной деятельностью понимается занимательность, связанная с организацией урока и лишь косвенно связанная с учебным материалом. Например, ученик, лучше всех решивший устные упражнения, награждается значком «Самый смекалистый» и может носить его до следующего урока.

Информационная занимательность вызывает любопытство обучающихся. Обычно она не ставит перед обучающимися проблемы, а заставляет задуматься об общих вопросах математики. Например, уже в пятом классе, начиная изучать числа, можно рассказать историю о богаче-миллионере и незнакомце, который при встрече предложил, казалось бы, очень выгодную для богача сделку: «Я буду  целый месяц приносить тебе  ежедневно по сто тысяч рублей. Не даром, разумеется, но плата пустяшная. В первый день ты должен по нашему договору уплатить 1 коп., во второй – 2 коп., за третью сотню – 4 коп., за четвертую – 8 коп. и так целый месяц, каждый день вдвое больше предыдущего», - сказал незнакомец. Богач с радостью согласился. Цифры начали расти с неумолимой быстротой (далее мы узнаем, что это геометрическая прогрессия) и в последний раз миллионер, получив в общей сумме 3000000рублей, подсчитал, что сам отдал 10737418 рублей 23 копейки. Без малого 11 миллионов! А ведь началось все с одной копейки. Это впечатляет.

  1. Новизна опыта.

Каждый из нас огорчается, видя на своих уроках скучающие лица; когда же ученики работают увлеченно, то и мы испытываем удовлетворение. Умение увлечь ребят работой, и есть, в конечном счете,  педагогическое мастерство, к которому мы все стремимся.

Новизна моего  опыта заключается в попытке объединить хорошо известные теоретические основы преподавания математики с новыми интерактивными педагогическими технологиями, интегрировать знания, связывая темы своего курса, как с родственными, так и другими учебными дисциплинами, обогащая знания, расширяя кругозор обучающихся   для формирования у них необходимых предметных компетенций.

  Чтобы добиться этого, необходимо вводить в процесс обучения развивающие приемы, повышающие интерес к предмету, а следовательно способствующие активизации познавательной деятельности.

Я считаю, что актуальность решения занимательных задач определяет развитие высокого уровня мотивации к учебной деятельности, активизации познавательных интересов обучающихся. В преодолении посильных трудностей у обучающихся возникает постоянная потребность в овладении новыми знаниями, новыми способами действий, умениями и навыками. В то же время преодоление ребенком определенного интеллектуального барьера (для каждого - своего) позволяет ему испытать чувство гордости за себя,  вселяет уверенность в свои силы, в возможности своего интеллектуального потенциала. А без этого не может быть и полноценного учения. Эстетические, эмоциональные переживания школьников в процессе математической деятельности связаны с «ситуацией успеха», о создании которой учителю не следует  забывать.

5. Технология опыта.

«Математика учит точности мысли, подчинению логике доказательства, понятию строго обоснованной истины, а все это формирует личность, пожалуй, больше, чем музыка».

А.Д.Александрова.

Борис Сосновский считает, что «Педагогическая работа  это прежде всего и более всего работа психологическая». Мне нравится притча о Шартрском соборе, и я ее рассказываю детям: «Путник спросил трех его строителей, кативших по дороге тачки с камнями, что они делают. Один сказал: «Везу тачку, пропади она пропадом». Второй сказал: «Зарабатываю на хлеб. Семья». Третий сказал: «Я строю Шартрский собор». Хотелось бы, чтоб все мы: и учителя, и дети, отвечая на вопрос: «Зачем мы ходим в школу?», сказали правду и в этой правде-ответе были составляющие ответов рабочих, но предпочтение отдано третьему ответу.

Каков же он – современный  ученик? Мой ученик?

Он понимает и любит математику как я. Он относится к своей математической деятельности так же,  как я к своей, прежде всего – серьезно. Но он самостоятелен по мыслям и поступкам. Он спорит со мной, не соглашается со мной. Мой ученик критически воспринимает написанное и сказанное, пропуская все через себя. Мой ученик может ошибаться, оставляя и за мной это право.

Но все это будет, если присутствует, имеется определенная атмосфера, «микроклимат». Атмосфера рождается от взаимоприсутствия и взаимодействия конкретных людей, существует вне нас, но и в нас, поскольку мы – взрослые  и дети – ее и творим. Ее основа – отношения: мое - к детям и к предмету, и отношения детей ко мне и к предмету. Атмосферу невозможно скопировать и нельзя перенять из чужого опыта, он зависит от установки, если изменилась установка, то меняется атмосфера. Но в большей степени она зависит от учителя, от его нравственности или безнравственности, его требовательности к себе и самоконтроле. Хорошая атмосфера – это радость и успех в труде. Плохая атмосфера – нет желания трудиться. Идеальная атмосфера – это совместная работа в поиске истины.

Смекалка – это особый вид проявления  творчества. Она выражается в результате анализа сравнений, обобщений, установления связей, аналогии, выводов, умозаключений. Эти качества умственной деятельности можно и нужно развивать в процессе обучения. Предлагая обучающимся занимательные задачи, я формирую у них способность выполнять эти операции и одновременно развиваю смекалку.

Основными мыслительными операциями, которые присутствуют практически  во всех логических приемах, являются анализ и синтез. Анализ и синтез – две стороны единого мыслительного процесса, они взаимосвязаны, взаимно проникают друг в друга, находятся в диалектическом единстве. В пятом классе, например, при изучении темы «Геометрические  фигуры» можно задать такие вопросы:

  1. Определите, сколько треугольников вы видит на рис. 1 и квадратов на рис. 2а,б?

 

           Рис. 1                                         Рис. 2а                                  Рис. 2б

  1. Проведите отрезки так, чтобы они разделили пятиугольник на пять треугольников. Назовите, сколько отрезков вы провели.
  2. Начертите треугольник. Проведите в нем отрезок так, чтобы он разделил треугольник на четырехугольник и треугольник. Определите, периметр, какой фигуры больше.
  3. Деревянный окрашенный куб распилили пополам. Определите, сколько стало окрашенных и неокрашенных граней у каждой половины.

Работа в процессе обучения может быть организована так, что школьники принимают участие в отборе характеристических свойств, изучая, например, несколько объектов, среди которых есть относящиеся и не относящиеся к понятию, а затем сами пытаются сформулировать определение. Это есть высшая форма проявления аналитико-синтетической деятельности в обучении. Разложение и соединение в значительной степени свойственны математике и логике. Поэтому аналитико-синтетическая деятельность является одним из ведущих видов творческой математической деятельности.

Сравнение – мыслительная операция, метод познания, состоящий в установлении сходных или различных свойств в предметах и явлениях. Нахождение признаков сходства – сопоставление, нахождение признаков различия – противопоставление, предметов или явлений. Формировать умение пользоваться этим приемом я начинаю поэтапно, например:

  1. 5-й класс: Определите, что общего в данных фигурах, а в чем различие (рис.1,2).

     

                 Рис. 1                                                                Рис. 2

  1. Уберите лишнюю фигуру. Ответ обоснуйте (рис.3).      

                                                     

Рис. 3

Занятия внеурочной деятельности я люблю начинать с разгадывания ярких, красивых, хорошо оформленных ребусов, шарад. Дети с удовольствием их разгадывают, загораются, приносят новые из книг или придумывают их сами. Ученица шестого класса, например, составила вот такие шарады:

  • С «Д» -  давно я мерой слала, с «Т» - уж нету выше балла  (пядь-пять).
  • Счастливой цифру ту считают, при счете ее применяют. А «М» вот на «Т» поменяем, и рыбы немало поймали  (семь-сеть).
  • С «К» - фигура без углов, с «Д» - дружить с тобой готов (круг - друг).

Очень важными считаю задачи на внимание, где нужно сосчитать количество отрезков, квадратов или кубиков. Учу детей упорядоченному счету, чтобы не было повтора или что-то было не сосчитано. Например:

  1. Подсчитать количество отрезков. (Их 10.)

                                    ____ ____ ____ ____

  1. Сосчитать количество прямоугольников. (Их 30.)

     

  1. Куб с ребром 3 см покрасили со всех сторон, потом распилили его на кубики с ребром 1 см. Сколько среди них имеют одну, две, три окрашенные грани?

В решении этой задачи ребята объясняют (что очень важно), с чего начинать счет, а именно: с кубиков с 3-мя окрашенными гранями, так как они находятся при вершинах (их 8). Дальше считают кубики с 2-мя окрашенными гранями – они на ребрах (их 12), но при вершинах уже взяли, значит всего тоже 12. Теперь кубики с 1-ой окрашенной гранью – они находятся на гранях куба, которых 6. Дальше все очень просто: 3³ = 27 см³ - это объем куба, а значит столько и кубов, а посему из      27 – (12+8+6) = 1 кубик неокрашенный.

Дети очень любят задания на «нарушение стереотипов», задачи-шутки. Увеличивает интерес, активность и количество участников задания  необычность записи, чертеж, схема или таблица.

Учат смотреть и видеть, готовят к восприятию геометрических задач  задачи на разрезание и конструирование.

Приятно видеть, что применение различных форм, методов, способов решения нестандартных задач приводит к тому, что ученики легко решают различные  задачи как из школьной программы, так и задания  из «Кенгуру» и олимпиадных работ и решают их очень рационально.

                                      Результативность

Можно выделить следующие положительные результаты моей работы:

  1. У большинства учащихся сформирован интерес к изучению математики, что требует от них трудолюбия, сосредоточенности, напряжения, настойчивости, целеустремленности.
  2. Большинство учащихся справляются с решением не только стандартных задач, но и задач повышенного уровня сложности, причем решают очень рационально.
  3. Повышается качество знаний учащихся по математическим предметам.
  4. Формируется математическая культура, которая предполагает наличие большого кругозора, умения по малейшим, незаметным признакам находить аналогию с другими  областями математики, находить разные модели задач, в том числе более простые, более наглядные и красивые.        

На протяжении нескольких лет мы активно участвуем  в международной математической игре «Кенгуру», дистанционной олимпиаде по математике «Наследие Евклида», дистанционном конкурсе – игре по математике «Потомки Пифагора»

Вид, название мероприятия

Уровень

Результат (занятое место)

Дата проведения  

 Документы (материалы) подтверждающие результаты

Дистанционная олимпиада по математике «Наследие Евклида»

Всероссийский

Участие

21.02.2017

Сертификаты

Конкурс-игра «Кенгуру»

Международный

Участие

Ежегодно

Сертификаты

 

Интернет олимпиаде по физике «Зубренок»

Всероссийский

Участие

10.02.2017

Сертификаты

Дистанционный конкурс – игра по математике «Потомки Пифагора»

Всероссийский

Диплом 1 степени – 3

Диплом 2 степени – 2

Диплом 3 степени  - 6

16.12.2017

Дипломы

8. Адресная направленность

          Представленный педагогический опыт имеет следующие компоненты  адресной направленности:

  1. Обучающиеся основной школы.
  2. Педагоги-психологи, заместители директора по учебно-воспитательной работе,  
  3. Учителя основной школы.

9.Трудоемкость

Трудоёмкость опыта заключается, прежде всего, в том, что не весь учебный материал  можно построить в виде оригинальных занимательных задач.

Главный  фактор  занимательности -  это приобщение   учащихся  к  творческому  поиску, активизация  их  самостоятельной  исследовательской деятельности. В наше время новых педагогических технологий, время компьютеризации на первое место  выходят информационно-коммуникативные технологии в обучении. Все  большее значение придается  привлечению учащихся к использованию в своей деятельности  компьютера. Это  разработка презентаций к отдельным темам, по  истории математики, проектов, исследовательских работ. Все это  также  способствует  развитию креативности у школьников. Но, конечно, такие задания могут выполнить не все обучающиеся. Поэтому даваться они должны   дифференцировано. Я уделяю большое внимание  домашнему заданию. Домашние работы имеют большое значение в развитии творчества учащихся. Начиная с 5-го класса, я предлагаю ученикам выполнять домашние задания в   творческой форме: самостоятельно составленные задачи с иллюстрациями, кроссворды, и т.д.

За время работы мною были разработаны и применяются на практике:

  1. Система уроков по различным темам
  2. Дидактические материалы с оригинальными задачами для трансформации их учащимися в жизненно важные ситуации
  3. Мультимедийные презентации для проведения уроков
  4. Методические разработки игр

      В  заключении   перечислю еще ряд  приемов  и  методов, позволяющих мне активизировать  познавательную  и  творческую  деятельность учащихся:

- Работа в парах.

- Различные формы работы с книгой.

-Использование различных видов поощрений (жетоны, словесное, присвоение звания «Лучший математик класса» и т.п.).

- Использование проблемных ситуаций.

- Использование на уроках элементов историзма, занимательности: уроки-сказки, уроки-путешествия и т.д.

- Самостоятельные работы с использованием аналогий, сравнений.

- Изложение материала блоками.

-Наглядность, доступность, оригинальность  решений  различными способами, самостоятельность в получении знаний, связь науки с практикой.

         Хочется закончить словами К.Бальмонта: «Умей  творить из  самых малых крох, иначе  для  чего же ты кудесник?».  Ведь  одна   из задач     работы  учителя   - это сделать  процесс обучения интересным для каждого ученика  всеми возможными способами, т.к. «Лучше усваиваются  те  знания,  которые поглощаются с аппетитом». (А.Франс.)


По теме: методические разработки, презентации и конспекты

Описание педагогического опыта

Описание педагогического опыта по теме самообразования: "Практическая направленность на уроках географии как средство реализации компетентностного подхода в обучении учащихся "...

Описание педагогического опыта учителя физкультуры Рассолова А.В.

Здесь описывается моя методичская тема, представлен опыт работы по данной теме и результаты...

Описание педагогического опыта

Описание педагогического опыта...

Описание педагогического опыта по использованию современных технологий в образовательном процессе

Описывается опыт применения системно - деятельностного подхода к обучению информатике. Информатика не может быть скучной! Эти слова наиболее полно выражают моё отношение к информатике как учебному пре...

Описание педагогического опыта классного руководителя

Представлен опыт работы с учащимися старших классов в малокомплектнойсельской школе....

Описание педагогического опыта «Социально-педагогические технологии по защите прав детства»

Описание педагогического опыта «Социально-педагогические технологии по защите прав детства»...