Дополнительное математическое занятие в 6 классе на «Принцип Дирихле».
статья по математике (6 класс)
В данной статье представлен фрагмент дополнительного занятия по математике по теме «Принцип Дирихле» в 6 классе. Рассматриваются различные формулировки принципа Дирихле, а также приводятся примеры применения принципа Дирихле при решении геометрических задач.
Скачать:
Вложение | Размер |
---|---|
statya.docx | 28.03 КБ |
Предварительный просмотр:
Дополнительное математическое занятие в 6 классе на «Принцип Дирихле».
Аннотация.
В данной статье представлен фрагмент дополнительного занятия по математике по теме «Принцип Дирихле» в 6 классе. Рассматриваются различные формулировки принципа Дирихле, а также приводятся примеры применения принципа Дирихле при решении геометрических задач.
Ключевые слова: геометрические задачи, концепции математического образования, дополнительное математическое образование (ДМО), математический кружок, принцип Дирихле.
Согласно Концепции математического образования значительную роль играет воспитательная составляющая деятельности школы. В наше время, как установлено, креативный подход приобретает наиболее пристальное внимание изучающего интереса, так как общество нуждается в массовом совершенствование ранее известного, в отказе от устойчивых и привычных, но пришедших в противоречие с имеющимися потребностями и возможностями форм. А это в свою очередь значит возрастание роли внеурочной деятельности. Проделанная работа П. М. Гурева и его собственная практика обучение школьников математике в ДМО обосновала то, что важные формой организации работы в дополнительном математическом образовании являются занятия математического кружка [2].
Вопросы, которые решают на занятиях математического кружка, выходят за пределы объема обязательных заданий, но они взаимосвязаны с основными вопросами программного материала в данном классе. В данной статье предлагается создание дополнительного занятия по математике в шестом классе на рассмотрение «Принципа Дирихле».
Рассмотрение принципа Дирихле на дополнительном задании преследует следующие цели:
Объяснить учащимся новый математический метод решения задачи, не рассматриваемый в школьной программе, научить на конкретных примерах применение данного принципа при решении геометрических задач.
Принцип Дирихле выражает отношение между двумя множествами. Есть много формулировок этого принципа.
Применяя данный принцип для решение определенной задачи, нужно разобраться, что будем выражать за «клетки», а что за «зайцев».
Одна из самых распространённых формулировок принципа Дирихле трактуется так: «Если в n клеток посадить n+1 зайцев, то найдется хотя бы одна клетка, в которой находится не менее чем 2 зайца» [1].
Обобщенный принцип Дирихле: «Если в n клеток посадить kn+1 зайцев, то найдётся хотя бы одна клетка, в которой находятся не менее чем k+1 заяц».
Рассмотрим геометрические задачи, которые опираются на дискретный принцип Дирихле.
Задача № 1. В равносторонний треугольник со стороной равной 2 см поместили 5 точек. Докажите, что найдутся такие две точки, расстояние между которыми меньше 1 см.
Рисунок – 1
Решение.
Нарисуем чертеж. Разделим наш треугольник на 4 равных треугольника (рис. 1). Стороны новых треугольников будут равны 1 см. Так как помещают 5 точек, то в один из полученных треугольников попадет хотя бы 2 точки, расстояние между которыми будет меньше стороны треугольника, т.е. меньше 1 см.
Задача № 2. Докажите, что если прямая M, расположенная в плоскости треугольника ABC, не проходит ни через одну из его вершин, то она не может пересечь все три стороны треугольника [3].
Рисунок – 2
Решение. Полуплоскости, на которые прямая M разбивает плоскость треугольника ABC, обозначим через и ; эти полуплоскости и будем считать открытыми (то есть не содержащими точек прямой M). Вершины рассмотренного треугольника (точки A, B, C) будут «зайцами», а полуплоскости и – «клетками». Каждый «заяц» попадает в какую-то «клетку» (т.к. М не проходит ни через одну из точек А, В, С). Исходя из точек, что «зайцев» три, а «клеток» только две, то найдутся два «зайца», которые попали в одну «клетку»; иначе говоря, найдутся такие две вершины треугольника ABC, которые принадлежат одной полуплоскости.
Пусть, точки A и B находятся в одной полуплоскости, то есть лежат по одну сторону от прямой M. Тогда отрезок AB не пересекается с М. Итак, в треугольнике ABC нашлась сторона, которая не пересекается с прямой M.
При изучении «Принципа Дирихле» на дополнительном занятии выделим следующие:
Принцип Дирихле является эффективным методом решения задач. Но для его применения на первых этапах изучения темы надо научиться определять какой объекты считать зайцем, а какой клеткой, при этом следить за тем, чтобы зайцев всегда было больше, чем клеток. А затем научиться пользоваться фактом наличия в одной клетке двух зайцев, и делать необходимые выводы.
- Андреев, А. А. Принцип Дирихле: учеб. для вузов / Г. Н. Горелов, А. Н. Люлев.
– Самара : Пифагор, 2016. – 84 с.
- Горелов, П. М. Система внеклассной работы по математике в средней школе № 21 города Кирова / П. М. Горелов. – Киров: ВСЭИ, 2014. – 233 с.
- Летчиков, А. В. Принцип Дирихле. Задачи с указаниями и решениями: Учебное пособие / А. В. Летчиков. – Ижевск: Издательство Удм. ун-та, 2015. – 108 с.
По теме: методические разработки, презентации и конспекты
Принцип Дирихле
Материал содержит подробную методическую разработку занятия математического кружка по данной теме, апробированную автором. Тема является одной из востребованных при обучению учащихся решению олимпиадн...
Принцип Дирихле
Разработки и решение задач с использованием принципа Дирихле....
Принцип Дирихле и его применение при решении задач.
Очень часто в задания математических олимпиад включаются задачи, при решении которых можно использовать прием, называемый принципом Дирихле. В шко...
Принцип Дирихле. Решение олимпиадных задач. Первое занятие
Материал предназначен для подготовке к олимпиаде....
Решение олимпиадных задач ,используя принцип Дирихле второе занятие
Данный материал можно использовать в рамках подготовки учащихся к олимпиаде, как дополнительный материал на кружках и элективных занятиях....
Тема самообразования "Принцип Дирихле".
Одна из главных задач педагога, обучающего детей с нарушениями зрения, является необходимость найти и применить все возможные педагогические методы и приёмы для оказания психолого-педагогической помощ...
Занятие кружка. Принцип Дирихле.
На занятии кружка рассмотрен сам принцип Дирихле. Показала как он работает. Разобрали олимпиадные задачи...