рабочая программа по математике 5-9класс
календарно-тематическое планирование по математике (5 класс)

Ломаченкова Людмила Ивановна

         Данная  рабочая программа рассчитана на очное и дистанционное обучение и обеспечивает достижение личностных, метапредметных и предметных результатов. 

Скачать:


Предварительный просмотр:

МУНИЦИПАЛЬНОЕ КАЗЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

МИРОВСКАЯ ОСНОВНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА

«Рассмотрено»

«Утверждено»

«Утверждаю»

Руководитель МО:

___/Ломаченкова Л.И./

Протокол № ___1__ от

«__31_»августа 2020г

Решением педагогического

совета школы

Протокол № _1____ от

«__31_»августа 2020г

Директор МКОУ Мировской ООШ:

_______/Данилова М.В./

Приказ № 178 от

«_31» августа  2020г

РАБОЧАЯ ПРОГРАММА ПЕДАГОГА

ЛОМАЧЕНКОВОЙ Л.И.  I квалификационная категория

ПО МАТЕМАТИКЕ  для 5-9 класса

(срок реализации программы 5 лет)

     

П.Алое Поле

2020г.

  1. Планируемые результаты освоения учебного предмета «Математика» в 5-9 классах

         Данная  рабочая программа рассчитана на очное и дистанционное обучение и обеспечивает достижение личностных, метапредметных и предметных результатов.  

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:

в личностном направлении:

1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

4) креативность мышления, инициатива, находчивость, активность при решении математических задач;

5) умение контролировать процесс и результат учебной математической деятельности;

6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

7) воспитание российской гражданской идентичности: патриотизма, уважения к Отечеству, осознания вклада отечественных учёных в развитие мировой науки;

8) ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

9) осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений с учётом устойчивых познавательных интересов, а также на основе формирования уважительного отношения к труду, развитие опыта участия в социально значимом труде;

10) умение контролировать процесс и результат учебной и математической деятельности;

11) критичность мышления, инициатива, находчивость, активность при решении геометрических задач;

в метапредметном направлении:

1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и пред-ставлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

4) умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

5) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

10) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе, развивать мотивы и интересы своей познавательной деятельности;

11) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

12) умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации;

13) устанавливать причинно-следственные связи, проводить доказательное рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;

14) умение иллюстрировать изученные понятия и свойства фигур, опровергать неверные утверждения;

15) компетентность в области использования информационно-коммуникационных технологий;

16) первоначальные представления об идеях и о методах геометрии как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

17) умение видеть геометрическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

18) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме, принимать решение в условиях неполной или избыточной, точной или вероятностной информации;

19) умение понимать и использовать математические средства наглядности (чертежи, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

20) умение выдвигать гипотезы при решении задачи и понимать необходимость их проверки;

в предметном направлении:

1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

2) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками  устных, письменных, инструментальных вычислений;

4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем; умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;

5) овладение системой функциональных понятий, функциональным языком и символикой; умение использовать функционально-графические представления для описания и анализа реальных зависимостей;

6) овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;

7) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;

8) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;

9) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

10) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера;

11) осознание значения геометрии для повседневной жизни человека;

12) представление о геометрии как сфере математической деятельности, об этапах её развития, о её значимости для развития цивилизации;

13) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования;

14) владение базовым понятийным аппаратом по основным разделам содержания;

15) систематические знания о фигурах и их свойствах;

16) практически значимые геометрические умения и навыки, умение применять их к решению геометрических и негеометрических задач, а именно:

  • изображать фигуры на плоскости;
  • использовать геометрический язык для описания предметов окружающего мира;
  • измерять длины отрезков, величины углов, вычислять площади фигур;
  • распознавать и изображать равные, симметричные и подобные фигуры;
  • выполнять построения геометрических фигур с помощью циркуля и линейки;
  • читать и использовать информацию, представленную на чертежах, схемах;
  • проводить практические расчёты.

Арифметика

По окончании изучения курса учащийся научится:

  • особенности десятичной системы счисления;
  •  использовать понятия, связанные с делимостью натуральных чисел;
  •  выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
  •  сравнивать и упорядочивать рациональные числа;
  •  выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
  •  использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты;
  •  анализировать графики зависимостей между величинами (расстояние, время; температура и т.п.).

Учащийся получит возможность:

  •  познакомиться с позиционными системами счисления с основаниями, отличными от 10;
  •  углубить и развить представления о натуральных числах и свойствах делимости;
  •  научиться использовать приёмы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.

Числовые и буквенные выражения. Уравнения

По окончании изучения курса учащийся научится:

  •  выполнять операции с числовыми выражениями;
  •  выполнять преобразования буквенных выражений (раскрытие скобок, приведение подобных слагаемых);
  •  решать линейные уравнения, решать текстовые задачи алгебраическим методом.

Учащийся получит возможность:

  •  развить представления о буквенных выражениях и их преобразованиях;
  •  овладеть специальными приёмами решения уравнений, применять аппарат уравнений для решения как текстовых так и  практических задач.

Геометрические фигуры.  

Измерение геометрических величин

По окончании изучения курса учащийся научится:

  •  распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;
  •  строить углы, определять их градусную меру;
  •  распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
  •  определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
  •  вычислять объём прямоугольного параллелепипеда и куба.

Учащийся получит возможность:

  •  научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
  •  углубить и развить представления о пространственных геометрических фигурах;
  • научиться  применять понятие развёртки для выполнения практических расчётов.

Элементы статистики, вероятности. Комбинаторные задачи

По окончании изучения курса учащийся научится:

  •  использовать простейшие способы представления и анализа статистических данных;
  •  решать комбинаторные задачи на нахождение количества объектов или комбинаций.

Учащийся получит возможность:

  • приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;
  • научиться некоторым специальным приемам решения комбинаторных задач.

Наглядная геометрия

Выпускник научится:

• распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;

• распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;

• строить развёртки куба и прямоугольного параллелепипеда;

• определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;

• вычислять объём прямоугольного параллелепипеда.

Выпускник получит возможность: 

• научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов.

Натуральные числа. Дроби. Рациональные числа

Выпускник научится:

• понимать особенности десятичной системы счисления;

• оперировать понятиями, связанными с делимостью натуральных чисел;

• выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;

• сравнивать и упорядочивать рациональные числа;

• выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;

• использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.

Выпускник получит возможность:

• познакомиться с позиционными системами счисления с основаниями, отличными от 10;

• углубить и развить представления о натуральных числах и свойствах делимости;

• научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.

Действительные числа

Выпускник научится:

• использовать начальные представления о множестве действительных чисел; 

• оперировать понятием квадратного корня, применять его в вычислениях.

Выпускник получит возможность:

• развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;

• развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).

Измерения, приближения, оценки

Выпускник научится:

• использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.

Выпускник получит возможность:

• понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;

• понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.

Алгебраические выражения

Выпускник научится:

• оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;

• выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;

• выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;

• выполнять разложение многочленов на множители.

Выпускник получит возможность научиться:

• выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;

• применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наимень-шего значения выражения).

Уравнения

Выпускник научится:

• решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;

• понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;

• применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.

Выпускник получит возможность:

• овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;

• применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.

Неравенства

Выпускник научится:

• понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;

• решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;

• применять аппарат неравенств для решения задач из различных разделов курса.

Выпускник получит возможность научиться:

• разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;

• применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.

Основные понятия. Числовые функции

Выпускник научится:

• понимать и использовать функциональные понятия и язык (термины, символические обозначения);

• строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;

• понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.

Выпускник получит возможность научиться:

• проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);

• использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.

Числовые последовательности

Выпускник научится:

• понимать и использовать язык последовательностей (термины, символические обозначения);

• применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.

Выпускник получит возможность научиться:

• решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;

• понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.

Описательная статистика

Выпускник научится использовать простейшие способы представления и анализа статистических данных.

Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.

Случайные события и вероятность

Выпускник научится находить относительную частоту и вероятность случайного события.

Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.

Комбинаторика

Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.

Геометрические фигуры

Выпускник научится:

• пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;

• распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;

• находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);

• оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;

• решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;

• решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;

• решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

• овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;

• приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;

• овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;

• научиться решать задачи на построение методом геометрического места точек и методом подобия;

• приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;

• приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

• использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;

• вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;

• вычислять длину окружности, длину дуги окружности;

• вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;

• решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;

• решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность научиться:

• вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;

• вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;

• применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

• вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;

• использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

• овладеть координатным методом решения задач на вычисления и доказательства;

• приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;

• приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».

Векторы

Выпускник научится:

• оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;

• находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;

• вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

• овладеть векторным методом для решения задач на вычисления и доказательства;

• приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».

Планируемые результаты обучения математике в 5 классе

Арифметика

По окончании изучения курса учащийся научится:

  • понимать особенности десятичной системы счисления;
  • использовать понятия, связанные с делимостью натуральных чисел;
  • выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
  • сравнивать и упорядочивать рациональные числа;
  • выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;
  • использовать понятия и умения, связанные с пропорциональностью величин, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты;

Учащийся получит возможность:

  • углубить и развить представления о натуральных числах и свойствах делимости;
  • научиться использовать приемы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.

Числовые и буквенные выражения. Уравнения

По окончании изучения курса учащийся научится:

  • выполнять операции с числовыми выражениями;
  • решать линейные уравнения, решать текстовые задачи алгебраическим методом.

Учащийся получит возможность:

  • развить представления о буквенных выражениях;
  • овладеть специальными приёмами решения уравнений, применять аппарат уравнений для решения как текстовых, так и практических задач.

Геометрические фигуры. Измерение геометрических величин

По окончании изучения курса учащийся научится:

  • распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;
  • строить углы, определять их градусную меру;
  •  распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды;
  • вычислять   объём   прямоугольного   параллелепипеда и куба.

Учащийся получит возможность:

  • научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
  • углубить и развить представления о пространственных геометрических фигурах;
  • научиться применять понятие развёртки для выполнения практических расчётов.

Элементы статистики,

вероятности. Комбинаторные задачи

По окончании изучения курса учащийся научится:

  • решать комбинаторные задачи на нахождение количества объектов или комбинаций.

Учащийся получит возможность:

научиться некоторым специальным приёмам решения комбинаторных задач. 

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ МАТЕМАТИКЕ В 6 КЛАССЕ

Арифметика

По окончании изучения курса учащийся научится:

  • понимать особенности десятичной системы счисления;
  • использовать понятия, связанные с делимостью натуральных чисел;
  • выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
  • сравнивать и упорядочивать рациональные числа;
  • выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применять калькулятор;
  • использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты;
  • анализировать графики зависимостей между величинами (расстояние, время; температура и т. п.).

Учащийся получит возможность:

  • познакомиться с позиционными системами счисления с основаниями, отличными от 10;
  • углубить и развить представления о натуральных числах и свойствах делимости;

научиться использовать приемы, рационализирующие вычисления, приобрести навык контролировать вычисления, выбирая подходящий для ситуации способ.

                             Числовые и буквенные выражения. Уравнения

По окончании изучения курса учащийся научится:

  • выполнять операции с числовыми выражениями;
  • выполнять преобразования буквенных выражений (раскрытие скобок, приведение подобных слагаемых);
  • решать линейные уравнения,
  • решать текстовые задачи алгебраическим методом.

Учащийся получит возможность:

  • развить представления о буквенных выражениях и их преобразованиях;
  • овладеть специальными приёмами решения уравнений,
  • научиться применять аппарат уравнений для решения как текстовых, так и практических задач.

Геометрические фигуры. Измерение геометрических величин

По окончании изучения курса учащийся научится:

  • распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры и их элементы;
  • строить углы, определять их градусную меру;
  • распознавать и изображать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
  • определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот; вычислять объём прямоугольного параллелепипеда и куба.

Учащийся получит возможность:

  • научиться вычислять объём пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
  • углубить и развить представления о пространственных геометрических фигурах;
  • научиться применять понятие развёртки для выполнения практических расчётов.

Элементы статистики, вероятности. Комбинаторные задачи

По окончании изучения курса учащийся научится:

  • использовать простейшие способы представления и анализа статистических данных;
  • решать комбинаторные задачи на нахождение количества объектов или комбинаций.

Учащийся получит возможность:

  • приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения,

 осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы;

научиться некоторым специальным приёмам решения комбинаторных задач.

Содержание курса математики 5-9 классов

Арифметика

Натуральные числа

Ряд натуральных чисел. Десятичная запись натуральных чисел. Округление натуральных чисел.

Координатный луч.

Сравнение натуральных чисел. Сложение и вычитание натуральных чисел. Свойства сложения.

Умножение и деление натуральных чисел. Свойства умножения. Деление с остатком. Степень числа с натуральным показателем.

Делители и кратные натурального числа. Наибольший общий делитель. Наименьшее общее кратное. Признаки делимости на 2, на 3, на 5, на 9, на 10.

Простые и составные числа. Разложение чисел на простые множители.

Решение текстовых задач арифметическими способами.

Дроби

Обыкновенные дроби. Основное свойство дроби.  Нахождение дроби от числа. Нахождение числа по значению его дроби. Правильные и неправильные дроби. Смешанные числа.

Сравнение обыкновенных дробей и смешанных чисел. Арифметические действия с обыкновенными дробями и смешанными числами.

Десятичные дроби. Сравнение и округление десятичных дробей. Арифметические действия с десятичными дробями. Прикидки результатов вычислений. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Бесконечные периодические десятичные дроби. Десятичное приближение обыкновенной дроби.

Отношение.  Процентное отношение двух чисел. Деление числа в данном отношении. Масштаб.

Пропорция. Основное свойство пропорции. Прямая и обратная пропорциональные зависимости.

Проценты. Нахождение процентов от числа. Нахождение числа по его процентам.

Решение текстовых задач арифметическими способами.

Рациональные числа

Положительные, отрицательные числа и число 0.

Противоположные числа. Модуль числа.

Целые числа. Рациональные числа. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства сложения и умножения рациональных чисел.

Координатная прямая. Координатная плоскость.

Величины. Зависимости между величинами

Единицы длины, площади, объема, массы, времени, скорости.

Примеры зависимостей между величинами. Представление зависимостей в виде формул. Вычисления по формулам.

Числовые и буквенные выражения. Уравнения

Числовые выражения. Значение числового выражения. Порядок действий в числовых выражениях. Буквенные выражения. Раскрытие скобок. Подобные слагаемые, приведение подобных слагаемых. Формулы.

Уравнения. Корень уравнения. Основные свойства уравнений. Решение текстовых задач с помощью уравнений.

Элементы статистики, вероятности. Комбинаторные задачи

Представление данных в виде таблиц, круговых и столбчатых диаграмм, графиков.

Среднее арифметическое. Среднее значение величины.

Случайное событие. Достоверное и невозможное события. Вероятность случайного события. Решение комбинаторных задач.

Геометрические фигуры.  Измерения геометрических величин

Отрезок. Построение отрезка. Длина отрезка, ломаной.  Измерение длины отрезка, построение отрезка заданной длины. Периметр многоугольника. Плоскость. Прямая. Луч.

Угол. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Прямоугольник. Квадрат. Треугольник. Виды треугольников. Окружность и круг. Длина окружности. Число π.

Равенство фигур. Понятие и свойства площади. Площадь прямоугольника и квадрата. Площадь круга. Ось симметрии фигуры.

Наглядные представления о пространственных фигурах: прямоугольный параллелепипед, куб, пирамида, цилиндр, конус, шар, сфера. Примеры разверток многогранников, цилиндра, конуса. Понятие и свойства объема. Объем прямоугольного параллелепипеда и куба.

Взаимное расположение двух прямых. Перпендикулярные прямые. Параллельные прямые.

Осевая и центральная симметрии.

        

Математика в историческом развитии

Римская система счисления. Позиционные системы счисления. Обозначение цифр в Древней Руси. Старинные меры длины. Введение метра как единицы длины. Метрическая система мер в России, в Европе. История формирования математических символов. Дроби в Вавилоне, Египте, Риме, на Руси. Открытие десятичных дробей. Мир простых чисел. Золотое сечение. Число нуль. Появление отрицательных чисел.

Содержание курса «Алгебра»

Алгебраические выражения

Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных, входящих в алгебраические выражения. Подстановка выражений вместо переменных. Равенство буквенных выражений. Тождество, доказательство тождеств. Преобразование выражений.

Свойства степеней с целым показателем. Многочлены. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы квадрат разности, куб суммы и куб разности. Формула разности квадратов, формулы суммы кубов и разности кубов. Разложение многочлена на множители. Квадратный трехчлен. Выделение полного квадрата в квадратном трехчлене. Теорема Виета. Разложение квадратного трехчлена на линейные множители. Многочлены с одной переменной. Степень многочлена. Корень многочлена.

Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями.

Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычитаниях.

Уравнения и неравенства

 Уравнение с одной переменной. Корень уравнения. Линейное уравнение. Квадратное уравнение, формула корней квадратного уравнения. Решение рациональных уравнений. Примеры решения уравнений высших степеней: методы замены переменной, разложение на множители.

Уравнение с двумя переменными; решение системы. Система двух линейных уравнений с двумя переменными; решение подстановкой и алгебраическим сложением. Уравнение с несколькими переменными. Примеры решения нелинейных систем. Примеры решения уравнений в целых числах.

Неравенство с одной переменной. Решение неравенства. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Примеры решения дробно-рациональных неравенств.

Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств.

Переход от словесной формулировки соотношений между величинами к алгебраической. Решение текстовых задач алгебраическим способом.

Числовые последовательности

Понятие последовательности. Арифметическая и геометрическая прогрессии. Формулы общего члена арифметической и геометрической прогрессий, суммы первых нескольких членов арифметической и геометрической прогрессий.

Сложные проценты.

Числовые функции

Понятие функции. Область определения функции. Способы задания функции. График функции, возрастание и убывание функции, наибольшее и наименьшее значения функции, нули функции, промежутки знакопостоянства. Чтение графиков функций.

Функции, описывающие прямую и обратную пропорциональную зависимости, их графики. Линейная функция, ее график, геометрический смысл коэффициентов. Гипербола. Квадратичная функция, ее график, парабола. Координаты вершины параболы, ось симметрии. Степенные функции с натуральным показателем, их графики. Графики функций: корень квадратный, корень кубический, модуль. Использование графиков функций для решения уравнений и систем.

Примеры графических зависимостей, отражающих реальные процессы: колебание, показательный рост; числовые функции, описывающие эти процессы.

Параллельный перенос графика вдоль осей координат и симметрия относительно осей.

Координаты

 Изображение чисел точками координатной прямой. Геометрический смысл модуля числа. Числовые промежутки: интервал, отрезок, луч. Формула расстояния между точками координатной прямой.

Декартовы координаты на плоскости; координаты точки. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение прямой, угловой коэффициент прямой, условие параллельности прямых. Уравнение окружности с центром в начале координат и в любой заданной точке.

Графическая интерпретация уравнений с двумя переменными и их систем, неравенств с двумя переменными и их систем.

Содержание курса «Геометрия»

Простейшие геометрические фигуры

Точка, прямая. Отрезок, луч. Угол. Виды углов. Смежные и вертикальные углы. Биссектриса угла.

Пересекающиеся и параллельные прямые. Перпендикулярные прямые. Признаки параллельности прямых. Свойства параллельных прямых. Перпендикуляр и наклонная к прямой.

Многоугольники

Треугольники. Виды треугольников. Медиана, биссектриса, высота, средняя линия треугольника. Признаки равенства треугольников. Свойства и признаки равнобедренного треугольника. Серединный перпендикуляр отрезка. Сумма углов треугольника. Внешние углы треугольника. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Теорема Пифагора.

Подобные треугольники. Признаки подобия треугольников. Точки пересечения медиан, биссектрис, высот треугольника, серединных перпендикуляров сторон треугольника. Свойство биссектрисы треугольника. Теорема Фалеса. Метрические соотношения в прямоугольном треугольнике. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников. Теорема синусов и теорема косинусов.

Четырёхугольники. Параллелограмм. Свойства и признаки параллелограмма. Прямоугольник, ромб, квадрат, их свойства и признаки. Трапеция. Средняя линия трапеции и её свойства.

Многоугольники. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Геометрические построения

Окружность и круг. Элементы окружности и круга. Центральные и вписанные углы. Касательная к окружности и её свойства. Взаимное расположение прямой и окружности. Описанная и вписанная окружности треугольника. Вписанные и описанные четырёхугольники, их свойства и признаки. Вписанные и описанные многоугольники.

Геометрическое место точек (ГМТ). Серединный перпендикуляр отрезка и биссектриса угла как ГМТ.

Геометрические построения циркулем и линейкой. Основные задачи на построение: построение угла, равного данному, построение серединного перпендикуляра данного отрезка, построение прямой, проходящей через данную точку и перпендикулярной данной прямой, построение биссектрисы данного угла. Построение треугольника по заданным элементам. Метод ГМТ в задачах на построение.

Измерение геометрических величин

Длина отрезка. Расстояние между двумя точками. Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Периметр многоугольника.

Длина окружности. Длина дуги окружности.

Градусная мера угла. Величина вписанного угла.

Понятия площади многоугольника. Равновеликие фигуры. Нахождение площади квадрата, прямоугольника, параллелограмма, треугольника, трапеции.

Понятие площади круга. Площадь сектора. Отношение площадей подобных фигур.

Декартовые координаты на плоскости

Формула расстояния между двумя точками. Координаты середины отрезка. Уравнение фигуры. Уравнения окружности и прямой. Угловой коэффициент прямой.

Векторы

Понятие вектора. Модуль (длина) вектора. Равные векторы. Коллинеарные векторы. Координаты вектора. Сложение и вычитание векторов. Умножение вектора на число. Скалярное произведение векторов. Косинус угла между двумя векторами.

Геометрические преобразования

Понятие о преобразовании фигуры. Движение фигуры. Виды движения фигуры: параллельный перенос, осевая симметрия, центральная симметрия, поворот. Равные фигуры. Гомотетия. Подобие фигур.

Элементы логики

Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Необходимое и достаточное условия. Употребление логических связок если...,  то ..., тогда и только тогда.

Геометрия в историческом развитии

Из истории геометрии, «Начала» Евклида. История пятого постулата Евклида. Тригонометрия — наука об измерении треугольников. Построение правильных многоугольников. Как зародилась идея координат.

Н.И. Лобачевский. Л. Эйлер. Фалес. Пифагор.

III. Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы

5 КЛАСС

Названия темы

Количество часов

Количество контрольных работ

Повторение курса математики 4 класса

5

Натуральные числа

20

2

Сложение и вычитание натуральных чисел

33

2

Умножение и деление натуральных чисел

37

2

Обыкновенные дроби

17

1

Десятичные дроби

48

3

Повторение и систематизация учебного материала курса математики 5 класса

15

1

ИТОГО

175

11

6 КЛАСС

Названия темы

Количество часов

Количество контрольных работ

1.

Повторение курса математики 5 класса

4

2.

Делимость натуральных чисел  

14

1

3.

Обыкновенные дроби

39

3

4.

Отношения и пропорции

28

2

5.

Рациональные числа и действия над ними

72

4

6.

Повторение и систематизация учебного материала математики 6 класса

18

1

ИТОГО

175

10

                                     

                      Алгебра 7класс

Названия темы

Количество часов

Количество контрольных работ

1

Повторение

4

2

Выражения, тождества, уравнения.

18

2

3

Функции

11

1

4

Степень с натуральным показателем.

12

1

5

Многочлены

16

2

6

Формулы сокращенного умножения

20

2

7

Системы линейных уравнений

12

1

8

Повторение

12

1

Итого

105

8

Алгебра 8 класс

Названия темы

Количество часов

Количество контрольных работ

1

Повторение

2

1

Рациональные выражения

24

2

2

Квадратные корни.

18

2

3

Квадратные уравнения

22

2

4

Неравенства

19

2

5

Степень с целым показателем. Элементы статистики

13

1

6

Повторение учебного материала курса алгебры 7 класса

7

1

ИТОГО

105

8

Алгебра 9 класс

Названия темы

Количество часов

Количество контрольных работ

1

Повторение

6

1

1

Квадратичная функция

20

2

2

Уравнения и неравенства с одной переменной

15

1

3

Уравнения и неравенства с двумя переменными

17

1

4

Прогрессии

17

2

5

Элементы комбинаторики

12

1

6

Повторение и систематизация
учебного материала

15

1

ИТОГО

102

8

Геометрия 7 класс

Названия темы

Количество часов

Количество контрольных работ

1

Начальные геометрические сведения

10

1

2

Треугольники

18

1

3

Параллельные прямые.

11

1

4

Соотношения между сторонами и углами треугольника

21

2

5

Повторение и систематизация
учебного материала

10

1

ИТОГО

70

6

Геометрия 8 класс

Названия темы

Количество часов

Количество контрольных работ

1.

Повторение курса 7 класса

2

1

2

Четырехугольники

14

1

3

Площадь

14

1

4

Подобные треугольники

19

2

5

Окружность

17

1

6

Повторение и систематизация
учебного материала

             4

1

ИТОГО

70

7

Геометрия 9 класс

Названия темы

Количество часов

Количество контрольных работ

1

Повторение курса 8 класса

3

2

Векторы

8

3

Метод координат

10

1

4

Соотношения между сторонами и углами треугольника. Скалярное произведение векторов

11

1

5

Длина окружности и площадь круга

12

1

6

Движения

8

1

7

Начальные сведения из стереометрии
учебного материала

10

1

8

Повторение и систематизация учебного материала

6

1

ИТОГО

68

6



Предварительный просмотр:

МУНИЦИПАЛЬНОЕ КАЗЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

МИРОВСКАЯ ОСНОВНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА

«Рассмотрено»                                

«Утверждено»

«Утверждаю»

Руководитель МО:

________/Ломаченкова Л.И../

Протокол № ___1__ от

«__31_»августа 2020г

решением педагогического

 совета школы

Протокол № ___1__ от

«__31_»августа 2020г

              Директор МКОУ Мировской ООШ:

                  _______/Данилова М.В../

                       Приказ № _178____от

                           «__31_» августа  2020г

КАЛЕНДАРНО ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

НА 2020-2021 УЧЕБНЫЙ ГОД

УЧЕБНЫЙ ПРЕДМЕТ                МАТЕМАТИКА

КОЛИЧЕСТВО ЧАСОВ:

В НЕДЕЛЮ -     5

В ГОД  -    175

КЛАСС -    5

УЧИТЕЛЬ           Ломаченкова Людмила Ивановна

УЧЕБНИК: МАТЕМАТИКА 5  АВТОР  А.Г.Мерзляк, В.Б. Полонский. М.С.Якир

Календарно-тематическое планирование в 5 классе.

«Математика 5 класс» Авт. учебника А.Г. Мерзляк, В.Б. Полонский, М.С. Якир.

                                                                  5 ч в неделю, всего 175  ч.

Наименование тем, разделов

Кол-во час

Дата

Основные виды учебной  деятельности учащихся

Формы контроля

Примечание

Факт

По плану

Iчетверть

1-4

5

Повторение курса математики 4 класса

Входная контрольная работа

4

1

Повторить изученное в 4 классе

Натуральные числа(20ч)

6

Ряд натуральных чисел

1

Описывать свойства натурального ряда. Читать и записывать натуральные числа, сравнивать и упорядочивать их.

Распознавать на чертежах, рисунках, в окружающем мире отрезок, прямую, луч, плоскость. Приводить примеры модель этих фигур.

Измерять длины отрезков. Строить отрезки заданной длины. Решать задачи на нахождение длин отрезков. Выражать одни единицы длин через другие. Приводить примеры приборов со шкалами.

Строить на координатном луче точку с заданной координатой, определять координату точки.

7

Ряд натуральных чисел

1

8

Цифры. Десятичная запись натуральных чисел.

1

МД

9

Цифры. Десятичная запись натуральных чисел.

1

10

Отрезок. Длина отрезка. Ломаная

1

11

Отрезок. Длина отрезка. Ломаная

   1

12

Измерение длины отрезка.

1

13

Построение отрезка заданной длины.

1

СР (15 мин)

14

Плоскость. Прямая. Луч

1

15

Плоскость. Прямая. Луч

1

16

Плоскость. Прямая. Луч

1

17

Шкала. Координатный луч.

1

18

Шкала. Координатный луч.

1

19

Шкала. Координатный луч.

1

20

Сравнение натуральных чисел.

1

21

Сравнение натуральных чисел.

1

22

Сравнение натуральных чисел.

1

23

Повторение и систематизация учебного материала

1

24

Контрольная работа №1

1

К.р.

25

Повторение .Проверяем себя.

1

Тест

Сложение и вычитание натуральных чисел(33ч)

26

Сложение натуральных чисел.

1

Формулировать свойства сложения и вычитания натуральных чисел, записывать эти свойства в виде формул. Приводить примеры числовых и буквенных выражений, формул. Составлять числовые и буквенные выражения по условию задачи. Решать уравнения на основании зависимостей между компонентами действий сложения и вычитания. Решать текстовые задачи с помощью составления уравнений.

Распознавать на чертежах и рисунках углы, многоугольники, в частности треугольники, прямоугольники. Распознавать в окружающем мире модели этих фигур.

С помощью транспортира измерять градусные меры углов, строить углы заданной градусной меры, строить биссектрису данного угла. Классифицировать углы. Классифицировать треугольники по количеству равных сторон и по видам их углов. Описывать свойства прямоугольника.

Находить с помощью формул периметры прямоугольника и квадрата. Решать задачи на нахождение периметров прямоугольника и квадрата, градусной меры углов.

Строить логическую цепочку рассуждений, сопоставлять полученный результат с условием задачи.

Распознавать фигуры, имеющие ось симметрии.

 

27

Сложение натуральных чисел.

1

28

Свойства сложения.

1

СР

29

Свойства сложения.

1

30

Вычитание натуральных чисел.

1

31

Вычитание натуральных чисел.

1

32

Вычитание натуральных чисел.

1

33

Свойства вычитания

1

СР

34

Свойства вычитания

1

35

Числовые выражения. Значение числового выражения.

1

36

Порядок действий в числовых выражениях. Буквенные выражения.

1

37

Формулы.

1

Тест

38

Контрольная работа № 2

1

К.р.

39

Уравнения.

1

40

Корень уравнения

1

СР

41

Решение уравнений

1

42

Решение уравнений

1

43

Угол. Обозначение углов.

1

44

Угол. Обозначение углов.

1

45

Виды углов. Градусная мера угла

1

II четверть

46

Виды углов. Градусная мера угла

1

47

Понятие биссектрисы угла

1

48

Измерение и построение углов с помощью транспортира.

1

ПР

49

Измерение и построение углов с помощью транспортира

1

50

Понятие многоугольника.

1

1

СР

51

Равные фигуры.

1

52

Треугольник.

1

53

Виды треугольников

1

54

Построение треугольников

1

55

Прямоугольник.

1

56

Ось симметрии фигуры.

1

СР

57

Повторение и систематизация учебного материала

1

58

Контрольная работа № 3

1

К.р.

Умножение и деление натуральных чисел(37)

59

Умножение.

1

60

Умножение.

1

Формулировать свойства умножения и деления натуральных чисел, записывать эти свойства в виде формул. Решать уравнения на основе зависимостей между компонентами арифметических действий.

Находить остаток при делении натуральных чисел. По заданному основанию и показателю степени находить значение степени числа.

Находить площади прямоугольника и квадрата с помощью формул. Выражать одни единицы площади через другие.

Распознавать на чертежах и рисунках прямоугольный параллелепипед, пирамиду. Распознавать в окружающем мире модели этих фигур.

Изображать развертки прямоугольного параллелепипеда и пирамиды.

Находить объемы прямоугольного параллелепипеда и куба с помощью формул. Выражать одни единицы объема через другие.

Решать комбинаторные задачи с помощью перебора вариантов

61

Переместительное свойство умножения.

1

62

Переместительное свойство умножения

1

63

Сочетательное свойство умножения.

1

64

Сочетательное свойство умножения.

1

65

Сочетательное свойство умножения.

1

СР

66

Сочетательное свойство умножения.

1

67

Деление.

1

68

Деление.

1

69

Деление натурального числа на 10,100,1000 ..

1

70

Решение текстовых задач

1

71

Решение уравнений

1

72

Нахождение компонентов частного

1

73

Деление с остатком.

1

74

Деление с остатком.

75

Деление с остатком.

76

Промежуточная диагностическая работа

1

77

Степень числа.

1

78

Квадраты и кубы чисел

1

СР

79

Контрольная работа № 4

1

ТЕСТ

80

Повторение и систематизация учебного материал

1

III четверть

81

Понятие площади

1

82

Свойства площади.

1

83

Единицы измерения площади

1

84

Площадь прямоугольника.

1

СР

85

Площадь прямоугольника.

1

86

Прямоугольный параллелепипед

1

87

Прямоугольный параллелепипед

1

88

Пирамида.

1

89

Примеры развёрток многогранников

1

90

Понятие и свойства объёма

1

91

Объем прямоугольного параллелепипеда.

1

ТЕСТ

92

Объем прямоугольного параллелепипеда.

1

93

Комбинаторные задачи.

94

Комбинаторные задачи.

3

СР

95

Контрольная работа № 5

1

Обыкновенные дроби(17ч)

96

Понятие обыкновенной дроби.

1

97

Понятие обыкновенной дроби.

1

Распознавать обыкновенную дробь, правильные и неправильные дроби, смешанные числа. Читать и записывать обыкновенные дроби, смешанные числа. Сравнивать обыкновенные дроби с равными знаменателями. Складывать и вычитать обыкновенные дроби с равными знаменателями.

Преобразовывать неправильную дробь в смешанное число, смешанное число в неправильную дробь.

Уметь записывать результат деления двух натуральных чисел в виде обыкновенной дроби.

98

Правильные и неправильные дроби.

1

99

Правильные и неправильные дроби.

1

100

Сравнение дробей

1

101

Сравнение дробей

1

102

Сравнение дробей

1

СР

103

Сложение и вычитание дробей с одинаковыми знаменателями.

1

104

Сложение и вычитание дробей с одинаковыми знаменателями.

1

105

Дроби и деление натуральных чисел.

1

106

Смешанные числа.

1

107

Смешанные числа.

1

108

Смешанные числа.

1

109

Сравнение смешанных чисел

1

ТЕСТ

110

Сравнение смешанных чисел

1

111

Повторение и систематизация учебного материала

1

112

Контрольная работа № 6.

1

К.р

Десятичные дроби(48)

113

Представление о десятичных дробях.

1

Распознавать, читать и записывать десятичные дроби. Называть разряды десятичных знаков в записи десятичных дробей. Сравнивать десятичные дроби. Округлять десятичные дроби и натуральные числа. Выполнять прикидку результатов вычислений. Выполнять арифметические действия  над десятичными дробями.

Находить среднее арифметическое нескольких чисел. Приводить примеры средних значений величины. Разъяснять, что такое «Один процент». Представлять проценты в виде десятичных дробей и десятичные дроби в виде процентов. Находить процент от числа и число по его процентам.

114

Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

1

СР

115

Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной.

1

116

Сравнение десятичных дробей.

1

117

Сравнение десятичных дробей.

1

118

Сравнение десятичных дробей.

1

119

Округление чисел.

1

СР

120

Округление чисел.

1

121

Округление чисел.

1

122

Прикидки результатов вычислений

1

123

Сложение десятичных дробей

1

124

Сложение десятичных дробей

1

125

Сложение десятичных дробей.

1

ТЕСТ

126

Вычитание десятичных дробей.

1

127

Вычитание десятичных дробей.

1

128

Вычитание десятичных дробей.

1

129

Повторение и систематизация учебного материала

1

130

Контрольная работа № 7

1

IVчетверть

131

Умножение десятичных дробей.

1

К.р

132

Умножение десятичных дробей.

1

133

Умножение десятичных дробей.

1

134

Свойства умножения

1

135

Свойства умножения

1

136

Решение текстовых задач

1

СР

137

Решение текстовых задач

1

138

Решение текстовых задач

1

139

Деление десятичных дробей

1

140

Деление десятичных дробей

1

141

Деление десятичных дробей.

1

ТЕСТ

142

Решение текстовых задач

1

143

Решение текстовых задач

1

144

Решение текстовых задач

1

145

Контрольная работа № 8

1

К.р.

146

Среднее арифметическое. Среднее значение величины

1

147

Среднее арифметическое. Среднее значение величины

1

148

Среднее арифметическое. Среднее значение величины.

1

149

Проценты.

1

150

Проценты.

1

151

Проценты.

1

СР

152

Нахождение процентов от числа.

1

153

Нахождение процентов от числа.

1

154

Нахождение процентов от числа.

1

155

Нахождение числа по его процентам.

1

156

Нахождение числа по его процентам.

1

157

Нахождение числа по его процентам.

1

158

Решение задач

159

Повторение и систематизация учебного материала

1

Тест

160

Контрольная работа № 9

1

К.р.

Повторение (15ч)

161

Действия с натуральными числами

1

162

Решение уравнений

1

163

Комбинаторные задачи

1

164

Степень числа

1

165

Сложение ивычитание обыкновенных дробей

1

166

Годовая промежуточная аттестация

1

168

Смешанные числа

1

167

Сложение и вычитание десятичных дробей

1

168

Умножение и деление десятичных дробей

1

169

Проценты

1

170-175

Повторение и систематизация изученного материала

5


По теме: методические разработки, презентации и конспекты

Рабочая программа по химии 8-9класс.

Содержит пояснительную записку, тематическое и поурочное планирование....

рабочая программа по математике 7-9класс

Здесь размещена рабочая программа по математике для 7, 8, 9 классов изучающих математику по УМК Макарычев Ю.Н. и Атанасян Л.С....

Рабочая программа и КТП алгебра 9класс Мордкович102 ч.

Рабочая программа по алгебре 9 класса составлена  на основе программы для общеобразовательных учреждений: Математика. 5-11 классы / авт.-сост. И.И. Зубарева, А.Г. Мордкович. – М.: Мнемозина, 2009...

рабочая программа по математике-9класс

Рабочая  программа по математике для 9 класса составлена на основе следующих документов:1. Программы  общеобразовательных учреждений по алгебре 7–9...

рабочая программа по математике-9класс

Рабочая  программа по математике для 9 класса составлена на основе следующих документов:1. Программы  общеобразовательных учреждений по алгебре 7–9...

рабочая программа по математике в 5-9классах

Рабочая программа по математике в 5-9классах по ФГОС...

Рабочая программа по математике 5-9классы

Данная программа дает учащимся доступные количественные, пространствен­ные, временные и геометрические представления, которые помогут им в дальнейшем включиться в трудовую деятельность; позволяет ...