Программа элективного курса
элективный курс по математике (11 класс)

Шапошникова Надежда Ивановна

Содержание рабочей программы элективного курса соответствует основному курсу математики для средней (полной) школы и федеральному компоненту Государственного образовательного стандарта по математике; развивает базовый курс математики на старшей ступени общего образования, реализует принцип дополнения изучаемого материала на уроках алгебры и начал анализа системой упражнений, которые углубляют и расширяют школьный курс, и одновременно обеспечивает преемственность в знаниях и умениях учащихся основного курса математики 10-11 классов, что способствует расширению и углублению базового общеобразовательного курса алгебры и начал анализа .

Скачать:

ВложениеРазмер
Microsoft Office document icon programma_el_kursa_11_kl_baza.doc104 КБ
Файл programma_el_11_ppofil.docx20.93 КБ

Предварительный просмотр:

МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 2»

РАССМОТРЕНО

Руководитель ШМО ________________________

________________________

________________________

________________________

Протокол заседания ШМО От________2017г. № _____

СОГЛАСОВАНО

Заместитель директора               по УР

________________________

________________________

УТВЕРЖДЕНО

Директор МАОУ СОШ № 2 Александрова Е.В. ________________________

Приказ  от  .        №    

Рабочая программа элективного курса

«Практическая направленность заданий ЕГЭ»

в 10 а классе на 2017-2018 учебный год

учителя Шапошниковой Надежды Ивановны

     

г. Покачи

2017г.

ПРОГРАММА   ЭЛЕКТИВНОГО   КУРСА 

для 11 класса

«Практическая направленность заданий ЕГЭ»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

 Элективный   курс « Практические задачи в формате ЕГЭ ” разработан в рамках реализации концепции профильного обучения на старшей ступени общего образования и соответствует Государственному стандарту среднего образования по математике. При разработке данной программы учитывалось то, что  элективный   курс  как компонент образования должен быть направлен на удовлетворение познавательных потребностей и интересов старшеклассников, на формирование у них новых видов познавательной и практической деятельности, которые нехарактерны для традиционных учебных курсов.  рамках курса рассматриваются практические задачи , необходимые в повседневной жизни и в некоторых профессиях

Единый государственный экзамен по математике, привнесенный в российское образовательное пространство, имеет свои сильные и слабые стороны. Чтобы минусы обратить в плюсы, учителю, который готовит школьников к экзамену, в первую очередь необходимо знание о формате и структуре ЕГЭ, особенностях процедуры его проведения. Эта информация важна. Но не менее важна и внутренняя готовность учителя к смене формата итоговой аттестации, формата оценки результата обучения и, соответственно результатов его труда.

Итоговая аттестация за курс средней (полной) школы в разные годы проходила в разных формах. Существенно отличались экзаменационные варианты для выпускников, изучавших математику в так называемых общеобразовательных классах, и для выпускников физико-математических и математических классов. Разный уровень подготовки имеет место и у учащихся одного класса, в частности, зависит и от того, намерен ли ученик продолжать обучение, и будет ли его обучение связано с математикой. Все эти различия требуют от учителя разной методики подготовки учащихся к экзамену. Готовность ученика к экзамену включает и собственно умение выполнять предложенные задания, и выбор заданий, которые решить под силу, и способность к самоконтролю, и умение правильно распорядиться отведенным временем, и психологический настрой и концентрация.

Контрольные измерительные материалы единого государственного экзамена имеют довольно сложную структуру. В работу входят задания двух типов.

Задания В — с кратким ответом (результатом является некоторое целое число или число, записанное в виде десятичной дроби); задания С — с развернутым ответом (нужно записать на специальном бланке обоснованное решение).

Экзамен не должен стать для выпускника (абитуриента) испытанием на прочность нервной системы. Чем раньше начнется подготовка к экзамену, тем легче пройдет сдача экзамена. Подготовка к экзамену — это не «натаскивание» выпускника на задания, аналогичные заданиям прошлых лет. Подготовка означает изучение программного материала с включением заданий в формах, используемых при итоговой аттестации. Кроме того, необходимо ликвидировать пробелы в знаниях и постараться решить общие проблемы, они хорошо известны каждому учителю: отсутствие культуры вычислений и несформированность приемов самопроверки.

На первых уроках одиннадцатого класса обязательно должны содержаться задания на вычисление: сложение, умножение, деление дробей, преобразование иррациональных и тригонометрических выражений. И не так важно, в какой форме это будет проходить — в устной работе или письменной, но это должно быть. Очень важно правильно сориентировать одиннадцатиклассников — на каком уровне они будут изучать материал (на какую отметку они претендуют).

В предлагаемом курсе разработана  система заданий для подготовки старшеклассников (учащихся 10-11 классов) к ЕГЭ.

Основное содержание курса соответствует современным тенденциям развития школьного курса математики, идеям дифференциации, углубления и расширения знаний учащихся. Данный курс дает учащимся возможность познакомиться с нестандартными способами решения математических задач, способствует формированию и развитию таких качеств, как интеллектуальная  восприимчивость и способность к усвоению новой информации, гибкость и независимость логического мышления. Поможет учащимся в подготовке к ЕГЭ по математике, а также при выборе ими будущей профессии, связанной с математикой.

Каждая тема включает в себя: краткий справочник (основные определения, формулы, теоремы и пр.), примеры с решениями, тренировочные упражнения (на базовом и повышенном уровнях) и тесты.

Количество учебных часов -35.

Курс рассчитан на 1 год.

Цель курса: подготовить учащихся к сдаче ЕГЭ в соответствии с требованиями, предъявляемыми новыми образовательными стандартами.

 Задачи курса:

  • Повторить и обобщить знания по алгебре за курс основной общеобразовательной школы;
  • Расширить знания  по отдельным темам курса алгебра 5-9 классы;
  • обобщить и систематизировать знания учащихся по основным разделам математики;
  • познакомить учащихся с некоторыми методами и приемами решения математических задач;

- сформировать умения применять полученные знания при решении «нетипичных», нестандартных задач.

  • дополнить знания учащихся теоремами прикладного характера, областью применения которых являются задачи;
  • расширить и углубить представления учащихся о приемах и методах решения математических задач;
  • помочь овладеть рядом технических и интеллектуальных умений на уровне свободного их использования;

-развить интерес и положительную мотивацию изучения математики.

Ожидаемые результаты:

На основе поставленных задач предполагается, что учащиеся достигнут следующих результатов:

  • Овладеют общими универсальными приемами и подходами к решению заданий теста.
  • Усвоят основные приемы мыслительного поиска.
  • Выработают умения:
  • самоконтроль времени выполнения заданий;
  • оценка объективной и субъективной трудности заданий и, соответственно, разумный выбор этих заданий;
  • прикидка границ результатов;

В результате изучения курса учащиеся должны уметь:

  • точно и грамотно формулировать теоретические положения и излагать собственные рассуждения в ходе решения заданий;
  • уверенно решать задачи на вычисление, доказательство и построение графиков функций;

- применять свойства геометрических преобразований к построению графиков функций.

Контроль и система оценивания

  • Текущий контроль уровня усвоения материала осуществляется по результатам выполнения учащимися самостоятельных, практических и лабораторных работ.  Присутствует как качественная, так и количественная оценка деятельности.
    Качественная оценка базируется на анализе уровня мотивации учащихся, их общественном поведении, самостоятельности в организации учебного труда, а так же оценке уровня адаптации к предложенной жизненной ситуации (сдачи экзамена по алгебре в форме малого ЕГЭ).
    Количественная оценка предназначена для снабжения учащихся объективной информацией об овладении ими учебным материалом и производится по пятибалльной системе.
    Итоговый контроль реализуется в двух формах: традиционного зачёта и тестирования Текстовые задачи.

Формы организации учебных занятий

Формы проведения занятий включают в себя лекции, практические работы, тренинги по использованию методов поиска решений.
Основной тип занятий  комбинированный урок. Каждая тема курса начинается с постановки задачи. Теоретический материал излагается в форме мини лекции. После изучения теоретического материала выполняются практические задания для его закрепления.
Занятия строятся с учётом индивидуальных особенностей обучающихся, их темпа восприятия и уровня усвоения материала.
В ходе обучения периодически проводятся непродолжительные, рассчитанные на 5-10 минут, контрольные работы и тестовые испытания для определения глубины знаний и скорости выполнения заданий. Контрольные замеры обеспечивают эффективную обратную связь, позволяющую обучающим и обучающимся корректировать свою деятельность.
Систематическое повторение способствует более целостному осмыслению изученного материала, поскольку целенаправленное обращение к изученным ранее темам позволяет учащимся встраивать новые понятия в систему уже освоенных знаний.

 Основной тип занятий - практикум. Для наиболее успешного усвоения материала планируются различные формы работы с учащимися: лекционно-семинарские занятия, групповые, индивидуальные формы работы. Для текущего контроля на каждом занятии учащимся рекомендуется серия заданий, часть которых выполняется в классе, а часть - дома самостоятельно. Изучение данного курса заканчивается проведением либо итоговой контрольной работы, либо теста. Выработать умение пользоваться контрольно-измерительными материалами

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

п/п

Наименование тем курса

Всего часов

В том числе

Форма

контроля

лекция

практика

семинар

1

Преобразование тригонометрических выражений

4

1

2

1

тест

2

Решение тригонометрических уравнений

4

1

2

1

тест

3

Преобразование рациональных и иррациональных выражений

4

1

2

1

тест

4

Решение рациональных уравнений и неравенств

4

1

2

1

тест

5

Решение иррациональных уравнений и неравенств

4

1

2

1

тест

6

Преобразование показательных и логарифмических выражений

4

1

2

1

тест

7

Решение показательных и логарифмических уравнений и неравенств

4

1

2

1

тест

8

Решение задач по всему курсу. Итоговый контроль

7

7

тест

СОДЕРЖАНИЕ ПРОГРАММЫ КУРСА.

Тема 1. Преобразование тригонометрических выражений. (4 час.) Соотношения между тригонометрическими функциями одного итого же аргумента. Формулы кратных аргументов. Обратные тригонометрические функции.

Методы обучения: лекция, объяснение, выполнение тренировочных упражнений.

Формы контроля: проверка задач для самостоятельного решения; тестовая работа.

Тема 2. Решение тригонометрических уравнений. (4 час.) Формулы корней простейших тригонометрических уравнений. Частные случаи решения простейших тригонометрических уравнений. Отбор корней, принадлежащих промежутку. Способы решения тригонометрических уравнений.

Методы обучения: лекция, объяснение, выполнение тренировочных упражнений.

Форма контроля: проверка задач для самостоятельного решения, тестовая работа.

Тема 3. Преобразование рациональных и иррациональных выражений (4 час.) Свойства степени с целым показателем. Разложение многочлена на множители. Сокращение дроби. Сумма и разность дробей. Произведение и частное дробей. Преобразование иррациональных выражений.

Методы обучения: лекция, объяснение, выполнение тренировочных упражнений.

Формы контроля: проверка задач для самостоятельного решения; тестовая работа.

Тема 4. Решение рациональных уравнений и неравенств. (4 час.) Линейное уравнение. Квадратное уравнение. Неполные квадратные уравнения. Разложение квадратного трехчлена на множители. Дробно-рациональное уравнение. Решение рациональных неравенств.

Методы обучения: лекция, объяснение, выполнение тренировочных упражнений.

Форма контроля: проверка задач для самостоятельного решения, тестовая работа.

Тема 5. Решение иррациональных уравнений и неравенств. (4 час.) Иррациональные уравнения. Метод равносильности. Иррациональные неравенства. Алгоритм решения неравенств методом интервалов.

Методы обучения: лекция, объяснение, выполнение тренировочных упражнений.

Формы контроля: проверка задач для самостоятельного решения; тестовая работа.

Тема 6. Преобразование показательных и логарифмических выражений. (4 час.) Свойства степени с рациональным показателем. Логарифм. Свойства логарифмов. Преобразования логарифмических выражений.

Методы обучения: лекция, объяснение, выполнение тренировочных упражнений.

Формы контроля: проверка задач для самостоятельного решения; тестовая работа.

Тема 7. Решение показательных и логарифмических уравнений и неравенств. (4 час.) Показательные уравнения. Методы решения показательных уравнений. Показательные неравенства, примеры решений. Логарифмические уравнения. Метод равносильности. Логарифмические неравенства.

Методы обучения: лекция, объяснение, выполнение тренировочных упражнений.

Формы контроля: проверка задач для самостоятельного решения; тестовая работа.

Тема 8. Решение задач по всему курсу. Итоговый контроль. 6 час.

 Методы обучения: лекция, объяснение, выполнение тренировочных упражнений.

Формы контроля: проверка задач для самостоятельного решения; тестовая работа.

Структура курса представляет собой восемь логически законченных и содержательно взаимосвязанных тем, изучение которых обеспечит системность и практическую направленность знаний и умений учеников. Разнообразный дидактический материал дает возможность отбирать дополнительные задания для учащихся различной степени подготовки. Все занятия направлены на расширение и углубление базового курса. Содержание курса можно варьировать с учетом склонностей, интересов и уровня подготовленности учеников.

Основные методические особенности курса:

  1. Подготовка по тематическому принципу, соблюдая «правила спирали»  от простых типов заданий первой части до заданий со звездочкой второй части;
  2. Работа с тематическими тестами, выстроенными в виде логически взаимосвязанной системы, где из одного вытекает другое, т.е. правильно решенное предыдущее задание готовит понимание смысла следующего; выполненный сегодня тест готовит к пониманию и правильному выполнению завтрашнего и т. д.;
  3. Работа с тренировочными тестами в режиме «теста скорости»;
  4. Работа с тренировочными тестами в режиме максимальной нагрузки, как по содержанию, так и по времени для всех школьников в равной мере;
  5. Максимальное использование наличного запаса знаний, применяя различные «хитрости» и «правдоподобные рассуждения», для получения ответа простым и быстрым способом.
  6. Активное применение развивающих технологий: «Мозговой штурм».

Дидактические материалы.

Многовариантные тематические тесты.

КИМы прошлых лет.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Ященко И.В. Модулный курс «Я сдам. Базовый уровень ЕГЭ»



Предварительный просмотр:

МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА № 2»

РАССМОТРЕНО

Руководитель ШМО ________________________

________________________

________________________

________________________

Протокол заседания ШМО От________2017г. № _____

СОГЛАСОВАНО

Заместитель директора               по УР

________________________

________________________

УТВЕРЖДЕНО

Директор МАОУ СОШ № 2 Александрова Е.В. ________________________

Приказ  от  .        №    

Рабочая программа элективного курса

«Избранные вопросы математики, оставшиеся за страницам учебника математики»

в 10 а классе на 2017-2018 учебный год

учителя Шапошниковой Надежды Ивановны

     

г. Покачи

2017г.

Элективный курс по математике

«Избранные вопросы математики, оставшиеся за страницам учебника математики»

для учащихся 11 класса

Пояснительная записка

          Основная задача обучения математике в школе – обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену общества, достаточных для изучения смежных дисциплин и продолжения образования.

         Содержание рабочей программы элективного курса соответствует основному курсу математики для средней (полной) школы и федеральному компоненту Государственного образовательного стандарта по математике; развивает базовый курс математики на старшей ступени общего образования, реализует принцип дополнения изучаемого материала на уроках алгебры и начал анализа системой упражнений, которые углубляют и расширяют школьный курс, и одновременно обеспечивает преемственность в знаниях и умениях учащихся основного курса математики 10-11 классов, что способствует расширению и углублению базового общеобразовательного курса алгебры и начал анализа .

         Данный элективный курс направлен на формирование умений и способов деятельности, связанных с решением задач повышенного и высокого уровня сложности, получение дополнительных знаний по математике, интегрирующих усвоенные знания в систему.

          Рабочая программа элективного курса отвечает требованиям обучения на старшей ступени, направлена на реализацию личностно ориентированного обучения, основана на деятельностном подходе к обучению, предусматривает овладение учащимися способами деятельности, методами и приемами решения математических задач. Включение уравнений и неравенств нестандартных типов, комбинированных уравнений и неравенств, текстовых задач разных типов, рассмотрение методов и приемов их решений отвечают назначению элективного курса – расширению и углублению содержания курса математики с целью подготовки учащихся 11 класса к государственной итоговой аттестации в форме ЕГЭ.

           Содержание структурировано по блочно-модульному принципу, представлено в законченных самостоятельных модулях по каждому типу задач и методам их решения и соответствует перечню контролируемых вопросов в контрольно-измерительных материалах на ЕГЭ. 

           На учебных занятиях элективного курса используются активные методы обучения, предусматривается самостоятельная работа по овладению способами деятельности, методами и приемами решения математических задач. Занятия проходят в форме свободного практического урока и состоят из обобщенной теоретической и практической частей. Рабочая программа данного курса направлена на повышение уровня математической культуры старшеклассников.                             Курс призван помочь учащимся с любой степенью подготовленности в овладении способами деятельности, методами и приемами решения математических задач, повысить уровень математической культуры, способствует развитию познавательных интересов, мышления учащихся, умению оценить свой потенциал для дальнейшего обучения. С целью контроля и проверки усвоения учебного материала проводятся длительные домашние контрольные работы по каждому блоку, семинары с целью обобщения и систематизации. В учебно-тематическом плане определены зачетные работы по каждому блоку учебного материала. 

          Структура экзаменационной работы в форме ЕГЭ требует от учащихся не только знаний

на базовом уровне, но и умений выполнять задания повышенной и высокой сложности. В рамках урока не всегда возможно рассмотреть подобные задания, поэтому программа

элективного курса позволяет решить эту задачу. Курс предусматривает изучение методов решения уравнений и неравенств с модулем, параметрами, расширение и углубление знаний учащихся по решению тригонометрических, иррациональных, показательных и логарифмических уравнений и неравенств. Большое внимание уделяется задачам с параметрами. Задания данного курса не просты в решении, что позволяет повысить учебную мотивацию учащихся.

            Цель курса - создание условий для формирования и развития у обучающихся навыков

анализа и систематизации полученных ранее знаний, подготовка к итоговой аттестации в

форме ЕГЭ.

            Задачи курса:

 обеспечение усвоения обучающимися наиболее общих приемов и способов решения задач;

 формирование и развитие у старшеклассников аналитического и логического мышления при проектировании решения задачи;

 развитие умений самостоятельно анализировать и решать задачи по образцу и в незнакомой ситуации;

 формирование опыта творческой деятельности учащихся через исследовательскую деятельность при решении нестандартных задач;

 формирование навыка работы с научной литературой, различными источниками;

 развитие коммуникативных и общеучебных навыков работы в группе,самостоятельной работы, умений вести дискуссию, аргументировать ответы и т.д.

                Основные принципы:

– опережающая сложность (дома предлагается решить по 5-10 задач на неделю, причем 3-5 доступны всем, 1-3 – небольшой части учащихся и 1-2 – ни одному ученику);

– смена приоритетов (при решении достаточно трудных задач отдается приоритет идее; при решении стандартных, простых задач главное – правильный ответ);

– вариативность (сравнение различных методов и способов решения одного и того же уравнения или неравенства);

– самоконтроль (регулярный и систематический анализ своих ошибок и неудач должен быть непременным элементом самостоятельной работы учащихся).

            Основными формами организации учебно-познавательной деятельности на элективном курсе являются лекция, беседа, практикум, консультация, работа с компьютером.

            Рабочая программа элективного курса рассчитана на один год обучения, 1 час в неделю, всего в объеме 35 .

Учебно-тематический план.

№ п.п.

тема

Всего часов

лекция

практикум

тестирование

Дата план

Дата факт

1

Тригонометрические

уравнения и неравенства

6

2

1

2

        Иррациональные уравнения

и неравенства

5

2

2

1

3

Логарифмические и

показательные уравнения и

неравенства

5

2

3

1

4

Нестандартные методы

решения уравнений и

неравенств

6

1

4

1

5

Задачи с параметрами

8

0

7

1

6

Решение уравнений и

неравенств

4

0

3

1

7

Итоговое тестирование

1

0

0

1

Содержание элективных занятий

“Тригонометрические уравнения и неравенства”

Простейшие тригонометрические уравнения. Сведение тригонометрических уравненийпростейшим с помощью тождественных преобразований. Сведение тригонометрического уравнения к рациональному с одним неизвестным. Метод решения тригонометрических уравнений и неравенств. Отбор корней в тригонометрических уравнениях. Примеры систем тригонометрических уравнений. Уравнения и неравенства, содержащие обратные тригонометрические функции. Обобщение метода интервалов на тригонометрическойокружности. Решение тригонометрических неравенств методом интервалов.

“Иррациональные уравнения и неравенства”

Представление об иррациональных алгебраических функциях. Понятие арифметических и алгебраических корней. Иррациональные алгебраические выражения и уравнения. Уравнения с квадратными радикалами. Замена переменной. Замена с ограничениями. Неэквивалентные преобразования. Сущность проверки. Метод эквивалентных преобразований уравнений с квадратными радикалами. Сведение иррациональных уравнений к системам. Освобождение от кубических радикалов. Метод оценки. Использование монотонности. Использование однородности. Иррациональные алгебраические неравенства. Почему неравенства с радикалами сложнее уравнений. Эквивалентные преобразования неравенств. Стандартные схемы освобождения от радикалов в неравенствах (сведение к системам и совокупностям систем). Дробно-иррациональные неравенства. Сведение к совокупностям систем. Метод интервалов при решении иррациональных неравенств. Замена при решении иррациональных неравенств.

“Логарифмические и показательные уравнения и неравенства”

Методы решении показательных и логарифмических уравнений. Преобразования логарифмических уравнений. Замена переменных в уравнениях. Логарифмирование. Показательные и логарифмические неравенства. Методы решений показательных и логарифмических неравенств (метод замены переменных, метод замены множителей). Основные типы показательных и логарифмических уравнений и неравенств. Основные способы их решения. Примеры потери корней и приобретения лишних корней. Решение показательных и логарифмических уравнений, содержащих неизвестную в основании. Использование свойств функции. Графический способ решения. Использование нескольких приёмов при решении логарифмических и показательных уравнений и неравенств.

“Нестандартные методы решения уравнений и неравенств”

Применение свойств квадратного трехчлена. Использование свойств функции (свойство ограниченности, монотонности). Использование суперпозиций функций. . Уравнения тождества. Уравнения, при решении которых используются прогрессии. Уравнения с двумя неизвестными. Показательно-степенные уравнения.

“Задачи с параметрами” 8 часов

Аналитический подход. Выписывание ответа (описание множеств решений) в задачах с параметрами. Рациональные задачи с параметрами. Запись ответов. Иррациональные задачи с параметрами. «Собирание» ответов. Задачи с модулями и параметрами. Критические значения параметра. Метод интервалов в неравенствах с параметрами. Замена в задачах с параметрами. Метод разложения в задачах с параметрами. Разложение с помощью разрешения относительно параметра. Системы с параметрами. Применение производной при анализе и решении задач с параметрами. Решение уравнений и

Основные знания, умения

В результате изучения данного курса учащиеся:

должны знать:

 общие сведения об уравнениях, неравенствах и их системах;

 методы решения неравенств и систем уравнений;

 основные приёмы и методы решения: уравнений и неравенств с модулем и параметрами; линейных, квадратных уравнений и неравенств с параметрами;

иррациональных, тригонометрических, показательных, логарифмических уравнений

и неравенств, в том числе с параметрами.

должны уметь:

 применять изученные методы и приемы при решении уравнений и неравенств;

 проводить исследования при решении уравнений и неравенств с параметрами


По теме: методические разработки, презентации и конспекты

Программа элективного курса по русскому языку «ГИА: курс подготовки к экзамену по русскому языку в новой форме. 9 класс»

Программа элективного курса по русскому языку позволяет эффективно подготовить учащихся 9 класса к экзамену по русскому языку в новой форме....

Модифицированная программа элективного курса по информатике в 6β классе «ЗНАКОМСТВО С МУЛЬТИМЕДИЙНЫМИ ТЕХНОЛОГЯМИ» на 2010-2011 учебный год (на основе государственной программы элективного курса С.Н. Леготина «Мультимедийная презентация. Компьютерная

Информационно-коммуникативная компетентность — один из основных приоритетов в целях современного общего образования. Сформировать ИКТ- компетентность у учащихся позволяет реализация данного проекта, н...

Программа элективного курса для 11 классов «Информационно-коммуникационные технологии в учебных проектах (11 класс)» (68 часов) межпредметный элективный курс

Учебная программа соответствует требованиям стандарта базового курса «Информатика и ИКТ» для старшей ступени обучения, предназначена для изучения информационных – коммуникационных технологий в 11 клас...

Программа элективного курса для 10 классов «Информационно-коммуникационные технологии в учебных проектах (10 класс)» (68 часов) межпредметный элективный курс

Учебная программа соответствует требованиям стандарта базового курса «Информатика и ИКТ» для старшей ступени обучения, предназначена для изучения информационных – коммуникационных технологий в 11 клас...

ЭЛЕКТИВНЫЙ КУРС ПО ЛИТЕРАТУРЕ «СЕРЕБРЯНЫЙ ВЕК РУССКОЙ ПОЭЗИИ» В СТАРШИХ КЛАССАХ (Авторская программа элективного курса для учащихся 10-11 класса)

РЕЦЕНЗИЯна программу элективного курса«Серебряный век русской поэзии» в старших классахучителя русского языка и литературы МБОУ « Тогурская СОШ» Ольги Георгиевны Зиновой.Элективный курс «Серебряный ве...

Элективный курс «Мир, природа и общество» предназначен для обучающихся 11 класса. Рабочая программа курса составлена в соответствии с программой элективных курсов по географии в 10-11 классах / сост. И.Н. Солнцева.

Данный курс актуален, так как вооружает учащихся элементарными знаниями по географии, которые нужны для понимания основных направлений развития современного мира и многих геополитических процессов и я...