Рабочая программа по математике для 5-9 классов (ФГОС)
рабочая программа (5, 6, 7, 8, 9 класс)

Данилова Ирина Александровна

Рабочая программа по математике для 5 - 9 классов соответствует требованиям ФГОС ООО (приказ Министерства образования и науки российской Федерации от 17.12.2010г. № 1897, с изменениями).

Для реализации Рабочей программы используется учебно-методический комплект 

5 – 6 классы :

А.Г.Мерзляк, В.Б.Полянский, М.С.Якир. Математика  – 5 кл. (3-е изд.), 6 кл. (4-е изд.), - М. : Вентана - Граф, 2018;

7 - 9 классы:

По алгебре - Ю.Н. Макарычев, Н.Г. Миндюк, К.И.Нешков, С.Б.Суворова; под ред. С.А.Теляковского. М.: Просвещение, 2018.

По геометрии - Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев. 8 изд.- М.: Просвещение, 2018;

Рабочая программа рассчитана:

для 5-6 классов 5 часов в неделю (175 часов в год);

для 7-8 классов 5 часов в неделю (175 часов в год), из них 3 часа в неделю на алгебру (105 часов в год)  и 2 часа в неделю на геометрию (70 часов в год);

для 9 классов 5 часов в неделю (170 часов в год), из них 3 часа в неделю на алгебру (102 часа в год)  и 2 часа в неделю на геометрию (68 часов в год).

 

 

 

Скачать:

ВложениеРазмер
Microsoft Office document icon rp_2019-20.doc327.5 КБ

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №103»

                      ПРИНЯТО

на методическом объединении

естественно-математического цикла

Руководитель Смынтына В. А.                          

Протокол  №    от «___»________2019 г.

УТВЕРЖДАЮ

      Директор МБОУ «СОШ №103»

             ____________________ В.В.Ищук

             Приказ  №___от «___»__________2019 г.

СОГЛАСОВАНО

Заместитель директора по УВР

                _________________

«___»___________2019 г.

РАБОЧАЯ ПРОГРАММА

по математике

5-9 классы

Разработчики:

Булгакова Н. С., учитель математики Данилова И. А., учитель математики Фофонова Н. С., учитель математики Юрченко Т. С., учитель математики

 

Воронеж – 2019


Пояснительная записка

Рабочая программа по математике для 5 - 9 классов соответствует требованиям и положениям:

  1. ФГОС ООО (приказ Министерства образования и науки российской Федерации от 17.12.2010г. № 1897, с изменениями)
  2. Основной образовательной программы МБОУ «СОШ № 103».

Рабочая программа разработана на основе:

  1. Авторской рабочей программы. Алгебра 7-9 классы. Составитель Н.Г. Миндюк, Москва, «Просвещение», 2014г.
  2. Примерной программы по учебным предметам. Математика. 5-9 классы: проект.-3-е изд., переработанное.- М.: Просвещение, 2011. - 64 с.- (Стандарт второго поколения).
  3. Приказа Министерства образования и науки Российской Федерации от 31.03.2014 года № 253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования»;
  4. Учета особенностей основной образовательной программы и образовательных потребностей и запросов обучающихся МБОУ «СОШ № 103», и полностью отражает базовый уровень подготовки школьников.
  5. Сборника рабочих программ. 7—9 классы : пособие для учителей общеобразов. организаций / (сост. Т. А. Бурмистрова). — 2-е изд., дораб. — М. : Просвещение, 2014.

Программа построена с учетом принципов системности, научности и доступности,  а также преемственности и перспективности между различными разделами курса.

Для реализации Рабочей программы используется учебно-методический комплект:

5 – 6 классы :

А.Г.Мерзляк, В.Б.Полянский, М.С.Якир. Математика  – 5 кл. (3-е изд.), 6 кл. (4-е изд.), - М. : Вентана - Граф, 2018;

7 - 8 классы:

По алгебре - Ю.Н. Макарычев, Н.Г. Миндюк, К.И.Нешков, С.Б.Суворова; под ред. С.А.Теляковского. М.: Просвещение, 2018.

По геометрии - Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев. 8 изд.- М.: Просвещение, 2018;

9 классы:

По алгебре - Ю.Н. Макарычев, Н.Г. Миндюк, К.И.Нешков, С.Б.Суворова; под ред. С.А.Теляковского. М.: Просвещение, 2018.

По геометрии - Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев. 8 изд.- М.: Просвещение, 2018;

Рабочая программа разработана с целью создания условий для планирования, организации и управления образовательным процессом по математике на уровне основного общего образования.

Задачи программы:

* установить ценностные ориентиры на ступени основного общего образования;

* определить состав и характеристику универсальных учебных действий основного общего образования;

* выявить в содержании предметных линий универсальные учебные действия и определить условия их формирования в образовательном процессе и в социуме;

* обеспечить развитие универсальных учебных действий как собственно психологической составляющей фундаментального ядра содержания образования наряду с традиционным изложением предметного содержания конкретных дисциплин.

Рабочая программа основного общего образования по математике для 5-9 классов рассчитана на 5 лет. Согласно Региональному базисному учебному плану для образовательных учреждений Воронежской области для обязательного изучения математики на ступени основного общего образования отводится не менее 875 часов в год из расчета 5 часов в неделю с 5 по 9 класс. В соответствие с учебным планом МБОУ «СОШ № 103» на 2019 – 2020 учебный год на математику в 7-9 классах отведено 5 часов в неделю. Таким образом, рабочая программа рассчитана: для 5-6 классов 5 часов в неделю (175 часов в год); для 7-8 классов 5 часов в неделю (175 часов в год), из них 3 часа в неделю на алгебру (105 часов в год)  и 2 часа в неделю на геометрию (70 часов в год); для 9 классов 5 часов в неделю (170 часов в год), из них 3 часа в неделю на алгебру (102 часа в год)  и 2 часа в неделю на геометрию (68 часов в год).

Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:

  1. В направлении  личностного развития:
  • формирование представлений о математике, как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного нобщества;
  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
  • формирование честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
  • воспитание качеств личности, обеспечивающих социальную мобильность,

способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
  • развитие интереса к математическому творчеству и математических способностей;
  1. В метапредметном направлении:
  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
  •  приобретение опыта проектной и исследовательской деятельности как особой формы учебной работы, способствующей воспитанию самостоятельности, инициативности, ответственности, повышению мотивации и эффективности учебной деятельности;
  1.  В предметном направлении:
  • овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
  • создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Задачи:

  • овладеть системой математических знаний и умений, необходимых для применения в практической деятельности, изучении смежных дисциплин;
  • способствовать интеллектуальному развитию, формировать качества, необходимые человеку для полноценной жизни в современном обществе, свойственные математической деятельности: ясности и точности мысли, интуиции, логического мышления, пространственных представлений, способности к преодолению трудностей;
  • формировать представления об идеях и методах математики как универсального языка науки и техники, средствах моделирования явлений и процессов;
  • воспитывать культуру личности, отношение к математике как части общечеловеческой культуры, играющей особую роль в общественном развитии.

В организации учебно – воспитательного процесса важную роль играют задачи. Они являются и целью, и средством обучения. Важным условием правильной организации этого процесса является выбор рациональной системы методов и приемов обучения, специфики решаемых образовательных и воспитательных задач.

Целью изучения курса математике в 5-6 классах является систематическое развитие понятия числа, выработка умений выполнять устно и письменно арифметические действия над числами, переводить практические задачи на язык математики, подготовка учащихся к изучению систематических курсов алгебры и геометрии. Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают представление об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур.

Целью изучения курса математике в 7 - 9 классах является развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов, усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретического уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.      Целью изучения курса геометрии в 7-9 классах является систематическое изучение свойств геометрических фигур на плоскости, формирование пространственных представлений, развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин и курса стереометрии в старших классах.

В основе построения данного курса лежит идея гуманизации обучения, соответствующая современным представлениям о целях школьного образования и уделяющая особое внимание личности ученика, его интересам и способностям.  

Предлагаемый курс позволяет обеспечить формирование как предметных умений, так и универсальных учебных действий школьников, а также способствует достижению определённых во ФГОС личностных результатов, которые в дальнейшем позволят учащимся применять полученные знания и умения для решения различных жизненных задач.

Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. В программе оно представлено в виде совокупности содержательных разделов, конкретизирующих   соответствующие блоки фундаментального ядра применительно к основной школе. Программа регламентирует объем материала, обязательного для изучения в основной школе, а также дает его распределение между 5-6 и 7-9 классами.

Содержание математического образования в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.

Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.

Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.

Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.

Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности — умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных  математических дисциплинах, так и в смежных предметах.

Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется распределено — в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

Место учебного предмета в учебном плане

Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации на изучение математики в 5-6 классах отводится 5ч. В неделю, а в 7-9 классах – 5 ч. Всего 870 часов.

В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования предмет «Математика» изучается с 5-го по 9-й класс в виде следующих учебных курсов: 5–6 класс «Математика», 7–9 класс предмет «Математика» (Алгебра и Геометрия).

Распределение учебного времени между этими предметами представлено в таблице.

Классы

Предметы математического цикла

Количество часов на ступени основного образования

5 – 6 классы

Математика

350

7 – 9 классы

Математика (Алгебра)

312

Математика (Геометрия)

208

ВСЕГО

870

Информация о количестве учебных часов

Класс

Предмет, раздел

Количество часов в год

Количество часов в неделю

Количество контрольных работ в год ( в том числе административных)

5

Математика

175

5

12

6

Математика

175

5

14

7

Математика (Алгебра)

105

3

12

Математика (Геометрия)

70

2

7

8

Математика (Алгебра)

105

3

12

Математика (Геометрия)

70

2

8

9

Математика (Алгебра)

102

3

10

Математика (Геометрия)

68

2

7

Структура рабочей программы:

  1. Пояснительная записка.
  2. Планируемые результаты освоения учебного предмета.
  3. Содержание учебного предмета.
  4. Календарно-тематическое планирование.
  5. Приложения к рабочей программе.

Планируемые результаты освоения учебного предмета

 Личностными результатами изучения предмета «Математика» (в виде следующих учебных курсов: 56 класс – «Математика», 79 класс – «Математика» («Алгебра» и «Геометрия») являются следующие качества:

независимость и критичность мышления;

воля и настойчивость в достижении цели.

Средством достижения этих результатов является:

система заданий учебников;

представленная в учебниках в явном виде организация материала по принципу минимакса;

использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно-деятельностного подхода в обучении, технология оценивания.

Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).

Регулятивные УУД:

56-й классы

– самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;

выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;

составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);

– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

79-й классы

– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;

выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;

составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;

– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);

планировать свою индивидуальную образовательную траекторию;

работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);

– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;

– в ходе представления проекта давать оценку его результатам;

– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

уметь оценить степень успешности своей индивидуальной образовательной деятельности;

давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).

Средством формирования регулятивных УУД служат технология системно-деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных  достижений (учебных успехов).

Познавательные УУД:

59-й классы

анализировать, сравнивать, классифицировать и обобщать факты и явления;

осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

создавать математические модели;

– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

вычитывать все уровни текстовой информации.

уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

– понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

– самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;

уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.

– Использование математических знаний для решения различных математических задач и оценки полученных результатов.

– Совокупность умений по использованию доказательной математической речи.

– Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

Умения использовать математические средства для изучения и описания реальных процессов и явлений.

Независимость и критичность мышления.

Воля и настойчивость в достижении цели.

Коммуникативные УУД:

59-й классы

– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

– в дискуссии уметь выдвинуть контраргументы;

– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Средством формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно- ориентированного и системно- деятельностного обучения.

Предметными результатами изучения предмета «Математика» являются следующие умения

Выпускник научится в 5-6 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

  • Оперировать на базовом уровне[1] понятиями: множество, элемент множества, подмножество, принадлежность;
  • задавать множества перечислением их элементов;
  • находить пересечение, объединение, подмножество в простейших ситуациях.

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания.

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;
  • использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений;
  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;
  • выполнять округление рациональных чисел в соответствии с правилами;
  • сравнивать рациональные числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;
  • выполнять сравнение чисел в реальных ситуациях;
  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Статистика и теория вероятностей

  • Представлять данные в виде таблиц, диаграмм,
  • читать информацию, представленную в виде таблицы, диаграммы.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;
  • строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;
  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
  • составлять план решения задачи;
  • выделять этапы решения задачи;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
  • решать задачи на нахождение части числа и числа по его части;
  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
  • находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины;
  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)

Наглядная геометрия

Геометрические фигуры

  • Оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырехугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.

В повседневной жизни и при изучении других предметов:

  • решать практические задачи с применением простейших свойств фигур.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
  • вычислять площади прямоугольников.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;
  • выполнять простейшие построения и измерения на местности, необходимые в реальной жизни.

История математики

  • описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей.

Выпускник получит возможность научиться в 5-6 классах (для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях)

Элементы теории множеств и математической логики

  • Оперировать[2] понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность,
  • определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания.

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания;
  • строить цепочки умозаключений на основе использования правил логики.

Числа

  • Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных;
  • понимать и объяснять смысл позиционной записи натурального числа;
  • выполнять вычисления, в том числе с использованием приемов рациональных вычислений, обосновывать алгоритмы выполнения действий;
  • использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости;
  • выполнять округление рациональных чисел с заданной точностью;
  • упорядочивать числа, записанные в виде обыкновенных и десятичных дробей;
  • находить НОД и НОК чисел и использовать их при решении зада;.
  • оперировать понятием модуль числа, геометрическая интерпретация модуля числа.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;
  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;
  • составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов.

Уравнения и неравенства

  • Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство.

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое,
  • извлекать, информацию, представленную в таблицах, на диаграммах;
  • составлять таблицы, строить диаграммы на основе данных.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);
  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;
  • выделять этапы решения задачи и содержание каждого этапа;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;
  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение); выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задачи указанных типов.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;
  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
  • решать задачи на движение по реке, рассматривая разные системы отсчета.

Наглядная геометрия

Геометрические фигуры

  • Извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
  • изображать изучаемые фигуры от руки и с помощью компьютерных инструментов.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
  • вычислять площади прямоугольников, квадратов, объемы прямоугольных параллелепипедов, кубов.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объемы комнат;
  • выполнять простейшие построения на местности, необходимые в реальной жизни;
  • оценивать размеры реальных объектов окружающего мира.

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей.

Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

Элементы теории множеств и математической логики

  • Оперировать на базовом уровне[3] понятиями: множество, элемент множества, подмножество, принадлежность;
  • задавать множества перечислением их элементов;
  • находить пересечение, объединение, подмножество в простейших ситуациях;
  • оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;
  • приводить примеры и контрпримеры для подтверждения своих высказываний.

В повседневной жизни и при изучении других предметов:

  • использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;
  • использовать свойства чисел и правила действий при выполнении вычислений;
  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;
  • выполнять округление рациональных чисел в соответствии с правилами;
  • оценивать значение квадратного корня из положительного целого числа;
  • распознавать рациональные и иррациональные числа;
  • сравнивать числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;
  • выполнять сравнение чисел в реальных ситуациях;
  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

  • Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;
  • выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;
  • использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;
  • выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.

В повседневной жизни и при изучении других предметов:

  • понимать смысл записи числа в стандартном виде;
  • оперировать на базовом уровне понятием «стандартная запись числа».

Уравнения и неравенства

  • Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;
  • проверять справедливость числовых равенств и неравенств;
  • решать линейные неравенства и несложные неравенства, сводящиеся к линейным;
  • решать системы несложных линейных уравнений, неравенств;
  • проверять, является ли данное число решением уравнения (неравенства);
  • решать квадратные уравнения по формуле корней квадратного уравнения;
  • изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.

Функции

  • Находить значение функции по заданному значению аргумента;
  • находить значение аргумента по заданному значению функции в несложных ситуациях;
  • определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости;
  • по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;
  • строить график линейной функции;
  • проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);
  • определять приближенные значения координат точки пересечения графиков функций;
  • оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
  • решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчетом без применения формул.

В повседневной жизни и при изучении других предметов:

  • использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);
  • использовать свойства линейной функции и ее график при решении задач из других учебных предметов.

Статистика и теория вероятностей

  • Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;
  • решать простейшие комбинаторные задачи методом прямого и организованного перебора;
  • представлять данные в виде таблиц, диаграмм, графиков;
  • читать информацию, представленную в виде таблицы, диаграммы, графика;
  • определять основные статистические характеристики числовых наборов;
  • оценивать вероятность события в простейших случаях;
  • иметь представление о роли закона больших чисел в массовых явлениях.

В повседневной жизни и при изучении других предметов:

  • оценивать количество возможных вариантов методом перебора;
  • иметь представление о роли практически достоверных и маловероятных событий;
  • сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;
  • оценивать вероятность реальных событий и явлений в несложных ситуациях.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;
  • строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;
  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
  • составлять план решения задачи;
  • выделять этапы решения задачи;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
  • решать задачи на нахождение части числа и числа по его части;
  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
  • находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;
  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).

Геометрические фигуры

  • Оперировать на базовом уровне понятиями геометрических фигур;
  • извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;
  • применять для решения задач геометрические факты, если условия их применения заданы в явной форме;
  • решать задачи на нахождение геометрических величин по образцам или алгоритмам.

В повседневной жизни и при изучении других предметов:

  • использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания.

Отношения

  • Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для решения простейших задач, возникающих в реальной жизни.

Измерения и вычисления

  • Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
  • применять формулы периметра, площади и объема, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;
  • применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни.

Геометрические построения

  • Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.

В повседневной жизни и при изучении других предметов:

  • выполнять простейшие построения на местности, необходимые в реальной жизни.

Геометрические преобразования

  • Строить фигуру, симметричную данной фигуре относительно оси и точки.

В повседневной жизни и при изучении других предметов:

  • распознавать движение объектов в окружающем мире;
  • распознавать симметричные фигуры в окружающем мире.

Векторы и координаты на плоскости

  • Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число, координаты на плоскости;
  • определять приближенно координаты точки по ее изображению на координатной плоскости.

В повседневной жизни и при изучении других предметов:

  • использовать векторы для решения простейших задач на определение скорости относительного движения.

История математики

  • Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;
  • понимать роль математики в развитии России.

Методы математики

  • Выбирать подходящий изученный метод для решения изученных типов математических задач;
  • Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.

Выпускник получит возможность научиться в 7-9 классах для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях

Элементы теории множеств и математической логики

  • Оперировать[4] понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;
  • изображать множества и отношение множеств с помощью кругов Эйлера;
  • определять принадлежность элемента множеству, объединению и пересечению множеств;
  • задавать множество с помощью перечисления элементов, словесного описания;
  • оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);
  • строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов:

  • строить цепочки умозаключений на основе использования правил логики;
  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.

Числа

  • Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
  • понимать и объяснять смысл позиционной записи натурального числа;
  • выполнять вычисления, в том числе с использованием приемов рациональных вычислений;
  • выполнять округление рациональных чисел с заданной точностью;
  • сравнивать рациональные и иррациональные числа;
  • представлять рациональное число в виде десятичной дроби
  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;
  • находить НОД и НОК чисел и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;
  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;
  • составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;
  • записывать и округлять числовые значения реальных величин с использованием разных систем измерения.

Тождественные преобразования

  • Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;
  • выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);
  • выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;
  • выделять квадрат суммы и разности одночленов;
  • раскладывать на множители квадратный   трехчлен;
  • выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;
  • выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;
  • выполнять преобразования выражений, содержащих квадратные корни;
  • выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;
  • выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с числами, записанными в стандартном виде;
  • выполнять преобразования алгебраических выражений при решении задач других учебных предметов.

Уравнения и неравенства

  • Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);
  • решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;
  • решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;
  • решать дробно-линейные уравнения;
  • решать простейшие иррациональные уравнения вида , ;
  • решать уравнения вида ;
  • решать уравнения способом разложения на множители и замены переменной;
  • использовать метод интервалов для решения целых и дробно-рациональных неравенств;
  • решать линейные уравнения и неравенства с параметрами;
  • решать несложные квадратные уравнения с параметром;
  • решать несложные системы линейных уравнений с параметрами;
  • решать несложные уравнения в целых числах.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;
  • выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;
  • выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;
  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи.

Функции

  • Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, четность/нечетность функции;
  • строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: , ,, ;
  • на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;
  • составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;
  • исследовать функцию по ее графику;
  • находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;
  • оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;
  • решать задачи на арифметическую и геометрическую прогрессию.

В повседневной жизни и при изучении других предметов:

  • иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;
  • использовать свойства и график квадратичной функции при решении задач из других учебных предметов.

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
  • различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;
  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);
  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;
  • выделять этапы решения задачи и содержание каждого этапа;
  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
  • анализировать затруднения при решении задач;
  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;
  • решать разнообразные задачи «на части»,
  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
  • владеть основными методами решения задач на смеси, сплавы, концентрации;
  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
  • решать несложные задачи по математической статистике;
  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;
  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
  • решать задачи на движение по реке, рассматривая разные системы отсчета.

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
  • извлекать информацию, представленную в таблицах, на диаграммах, графиках;
  • составлять таблицы, строить диаграммы и графики на основе данных;
  • оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;
  • применять правило произведения при решении комбинаторных задач;
  • оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями;
  • представлять информацию с помощью кругов Эйлера;
  • решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;
  • определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;
  • оценивать вероятность реальных событий и явлений.

Геометрические фигуры

  • Оперировать понятиями геометрических фигур;
  • извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
  • применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения;
  • формулировать в простейших случаях свойства и признаки фигур;
  • доказывать геометрические утверждения;
  • владеть стандартной классификацией плоских фигур (треугольников и четырехугольников).

В повседневной жизни и при изучении других предметов:

  • использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин.

Отношения

  • Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;
  • применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;
  • характеризовать взаимное расположение прямой и окружности, двух окружностей.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для решения задач, возникающих в реальной жизни.

Измерения и вычисления

  • Оперировать представлениями о длине, площади, объеме как величинами. Применять теорему Пифагора, формулы площади, объема при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объема, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;
  • проводить простые вычисления на объемных телах;
  • формулировать задачи на вычисление длин, площадей и объемов и решать их.

В повседневной жизни и при изучении других предметов:

  • проводить вычисления на местности;
  • применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности.

Геометрические построения

  • Изображать геометрические фигуры по текстовому и символьному описанию;
  • свободно оперировать чертежными инструментами в несложных случаях,
  • выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;
  • изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.

В повседневной жизни и при изучении других предметов:

  • выполнять простейшие построения на местности, необходимые в реальной жизни;
  • оценивать размеры реальных объектов окружающего мира.

Преобразования

  • Оперировать понятием движения и преобразования подобия, владеть приемами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;
  • строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;
  • применять свойства движений для проведения простейших обоснований свойств фигур.

В повседневной жизни и при изучении других предметов:

  • применять свойства движений и применять подобие для построений и вычислений.

Векторы и координаты на плоскости

  • Оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение векторов, координаты на плоскости, координаты вектора;
  • выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших случаях угол между векторами, выполнять разложение вектора на составляющие, применять полученные знания в физике, пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;
  • применять векторы и координаты для решения геометрических задач на вычисление длин, углов.

В повседневной жизни и при изучении других предметов:

  • использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам.

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;
  • понимать роль математики в развитии России.

Методы математики

  • Используя изученные методы, проводить доказательство, выполнять опровержение;
  • выбирать изученные методы и их комбинации для решения математических задач;
  • использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;
  • применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.

Выпускник получит возможность научиться в 7-9 классах для успешного продолжения образования на углубленном уровне

Элементы теории множеств и математической логики

  • Свободно оперировать[5] понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств, способы задание множества;
  • задавать множества разными способами;
  • проверять выполнение характеристического свойства множества;
  • свободно оперировать понятиями: высказывание, истинность и ложность высказывания, сложные и простые высказывания, отрицание высказываний; истинность и ложность утверждения и его отрицания, операции над высказываниями: и, или, не; условные высказывания (импликации);
  • строить высказывания с использованием законов алгебры высказываний.

В повседневной жизни и при изучении других предметов:

  • строить рассуждения на основе использования правил логики;
  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

  • Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;
  • понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;
  • переводить числа из одной системы записи (системы счисления) в другую;
  • доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11 суммы и произведения чисел при выполнении вычислений и решении задач;
  • выполнять округление рациональных и иррациональных чисел с заданной точностью;
  • сравнивать действительные числа разными способами;
  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;
  • находить НОД и НОК чисел разными способами и использовать их при решении задач;
  • выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней.

В повседневной жизни и при изучении других предметов:

  • выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;
  • записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;
  • составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

  • Свободно оперировать понятиями степени с целым и дробным показателем;
  • выполнять доказательство свойств степени с целыми и дробными показателями;
  • оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;
  • свободно владеть приемами преобразования целых и дробно-рациональных выражений;
  • выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приемов;
  • использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трехчлена и для решения задач, в том числе задач с параметрами на основе квадратного трехчлена;
  • выполнять деление многочлена на многочлен с остатком;
  • доказывать свойства квадратных корней и корней степени n;
  • выполнять преобразования выражений, содержащих квадратные корни, корни степени n;
  • свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;
  • выполнять различные преобразования выражений, содержащих модули.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;
  • выполнять преобразования рациональных выражений при решении задач других учебных предметов;
  • выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей.

Уравнения и неравенства

  • Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;
  • решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;
  • знать теорему Виета для уравнений степени выше второй;
  • понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;
  • владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;
  • использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;
  • решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;
  • владеть разными методами доказательства неравенств;
  • решать уравнения в целых числах;
  • изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.

В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;
  • выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;
  • составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;
  • составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты.

Функции

  • Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, четность/нечетность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,
  • строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, ;
  • использовать преобразования графика функции  для построения графиков функций ;
  • анализировать свойства функций и вид графика в зависимости от параметров;
  • свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;
  • использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;
  • исследовать последовательности, заданные рекуррентно;
  • решать комбинированные задачи на арифметическую и геометрическую прогрессии.

В повседневной жизни и при изучении других предметов:

  • конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;
  • использовать графики зависимостей для исследования реальных процессов и явлений;
  • конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета.

Статистика и теория вероятностей

  • Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;
  • выбирать наиболее удобный способ представления информации, адекватный ее свойствам и целям анализа;
  • вычислять числовые характеристики выборки;
  • свободно оперировать понятиями: факториал числа, перестановки, сочетания и размещения, треугольник Паскаля;
  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;
  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;
  • знать примеры случайных величин, и вычислять их статистические характеристики;
  • использовать формулы комбинаторики при решении комбинаторных задач;
  • решать задачи на вычисление вероятности в том числе с использованием формул.

В повседневной жизни и при изучении других предметов:

  • представлять информацию о реальных процессах и явлениях способом, адекватным ее свойствам и цели исследования;
  • анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов;
  • оценивать вероятность реальных событий и явлений в различных ситуациях.

Текстовые задачи

  • Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу;
  • распознавать разные виды и типы задач;
  • использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи;
  • различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи;
  • знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный);
  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;
  • выделять этапы решения задачи и содержание каждого этапа;
  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;
  • анализировать затруднения при решении задач;
  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • изменять условие задач (количественные или качественные данные), исследовать измененное преобразованное;
  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях, конструировать новые ситуации на основе изменения условий задачи при движении по реке;
  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;
  • решать разнообразные задачи «на части»;
  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
  • объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;
  • владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения;
  •  решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;
  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;
  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;
  • решать несложные задачи по математической статистике;
  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • конструировать новые для данной задачи задачные ситуации с учетом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;
  • решать задачи на движение по реке, рассматривая разные системы отсчета;
  • конструировать задачные ситуации, приближенные к реальной действительности.

Геометрические фигуры

  • Свободно оперировать геометрическими понятиями при решении задач и проведении математических рассуждений;
  • самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новые классы фигур, проводить в несложных случаях классификацию фигур по различным основаниям;
  • исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;
  • решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;
  • формулировать и доказывать геометрические утверждения.

В повседневной жизни и при изучении других предметов:

  • составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат.

Отношения

  • Владеть понятием отношения как метапредметным;
  • свободно оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;
  • использовать свойства подобия и равенства фигур при решении задач.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для построения и исследования математических моделей объектов реальной жизни.

Измерения и вычисления

  • Свободно оперировать понятиями длина, площадь, объем, величина угла как величинами, использовать равновеликость и равносоставленность при решении задач на вычисление, самостоятельно получать и использовать формулы для вычислений площадей и объемов фигур, свободно оперировать широким набором формул на вычисление при решении сложных задач, в том числе и задач на вычисление в комбинациях окружности и треугольника, окружности и четырехугольника, а также с применением тригонометрии;
  • самостоятельно формулировать гипотезы и проверять их достоверность.

В повседневной жизни и при изучении других предметов:

  • свободно оперировать формулами при решении задач в других учебных предметах и при проведении необходимых вычислений в реальной жизни.

Геометрические построения

  • Оперировать понятием набора элементов, определяющих геометрическую фигуру,
  • владеть набором методов построений циркулем и линейкой;
  • проводить анализ и реализовывать этапы решения задач на построение.

В повседневной жизни и при изучении других предметов:

  • выполнять построения на местности;
  • оценивать размеры реальных объектов окружающего мира.

Преобразования

  • Оперировать движениями и преобразованиями как метапредметными понятиями;
  • оперировать понятием движения и преобразования подобия для обоснований, свободно владеть приемами построения фигур с помощью движений и преобразования подобия, а также комбинациями движений, движений и преобразований;
  • использовать свойства движений и преобразований для проведения обоснования и доказательства утверждений в геометрии и других учебных предметах;
  • пользоваться свойствами движений и преобразований при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять свойства движений и применять подобие для построений и вычислений.

Векторы и координаты на плоскости

  • Свободно оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, скалярное произведение векторов, координаты на плоскости, координаты вектора;
  • владеть векторным и координатным методом на плоскости для решения задач на вычисление и доказательства;
  • выполнять с помощью векторов и координат доказательство известных ему геометрических фактов (свойства средних линий, теорем о замечательных точках и т.п.) и получать новые свойства известных фигур;
  • использовать уравнения фигур для решения задач и самостоятельно составлять уравнения отдельных плоских фигур.

В повседневной жизни и при изучении других предметов:

  • использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам.

История математики

  • Понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях;
  • рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России.

Методы математики

  • Владеть знаниями о различных методах обоснования и опровержения математических утверждений и самостоятельно применять их;
  • владеть навыками анализа условия задачи и определения подходящих для решения задач изученных методов или их комбинаций;
  • характеризовать произведения искусства с учетом математических закономерностей в природе, использовать математические закономерности в самостоятельном творчестве.

Формы, методы и средства проверки результатов обучения по учебному предмету

На уроках математики, алгебры и геометрии применяются следующие формы проверки: индивидуальная, групповая, фронтальная; средства проверки: вопросы, задачи, тесты и другие задания; методы проверки: устный опрос, письменный контроль, зачет, самостоятельная работа, контрольная работа, практическая работа, тест.

Содержание учебного предмета.

 

АРИФМЕТИКА (270 ч.)

Натуральные числа. Натуральный ряд. Десятичная система счисления. Арифметические действия с натуральными числами. Свойства арифметических действий. Степень с натуральным показателем. Числовые выражения, значение числового выражения. Порядок действий в числовых выражениях, использование скобок. Решение текстовых задач арифметическими способами. Делители и кратные. Свойства и признаки делимости. Простые и составные числа. Разложение натурального числа на простые множители. Деление с остатком.

Дроби. Обыкновенные дроби. Основное свойство дроби. Сравнение обыкновенных дробей. Арифметические действия с обыкновенными дробями. Нахождение части от целого и целого по его части. Десятичные дроби. Сравнение десятичных дробей. Арифметические действия с десятичными дробями. Представление десятичной дроби в виде обыкновенной дроби и обыкновенной в виде десятичной. Проценты; нахождение процентов от величины и величины по ее процентам. Отношение; выражение отношения в процентах. Пропорция; основное свойство пропорции. Решение текстовых задач арифметическими способами.

Рациональные числа. Положительные и отрицательные числа, модуль числа. Множество целых чисел. Множество рациональных чисел; рациональное число как отношение m/n, где m — целое число, n — натуральное число. Сравнение рациональных чисел. Арифметические действия с рациональными числами. Свойства арифметических действий. Степень с целым показателем.

Действительные числа. Квадратный корень из числа. Корень третьей степени. Понятие об иррациональном числе. Иррациональность числа √2 и несоизмеримость стороны и диагонали квадрата. Десятичные приближения иррациональных чисел. Множество действительных чисел; представление действительных чисел в виде бесконечных десятичных дробей. Сравнение действительных чисел. Координатная прямая. Изображение чисел точками координатной прямой. Числовые промежутки.

Измерения, приближения, оценки. Размеры объектов окружающего мира (от элементарных частиц до Вселенной), длительность процессов в окружающем мире. Выделение множителя — степени 10 — в записи числа. Приближенное значение величины, точность приближения. Округление натуральных чисел и десятичных дробей. Прикидка и оценка результатов вычислений.

АЛГЕБРА (200 ч)

Алгебраические выражения. Буквенные выражения (выражения с переменными). Числовое значение буквенного выражения. Допустимые значения переменных. Подстановка выражений вместо переменных. Преобразование буквенных выражений на основе свойств арифметических действий. Равенство буквенных выражений. Тождество. Степень с натуральным показателем и ее свойства. Одночлены и многочлены. Степень многочлена. Сложение, вычитание, умножение многочленов. Формулы сокращенного умножения: квадрат суммы и квадрат разности. Формула разности квадратов. Преобразование целого выражения в многочлен. Разложение многочленов на множители. Многочлены с одной переменной. Корень многочлена. Квадратный трехчлен; разложение квадратного трехчлена на множители. Алгебраическая дробь. Основное свойство алгебраической дроби. Сложение, вычитание, умножение, деление алгебраических дробей. Степень с целым показателем и ее свойства. Рациональные выражения и их преобразования. Доказательство тождеств. Квадратные корни. Свойства арифметических квадратных корней и их применение к преобразованию числовых выражений и вычислениям.

Уравнения. Уравнение с одной переменной. Корень уравнения. Свойства числовых равенств. Равносильность уравнений. Линейное уравнение. Квадратное уравнение: формула корней квадратного уравнения. Теорема Виета. Решение уравнений, сводящихся к линейным и квадратным. Примеры решения уравнений третьей и четвертой степени. Решение дробно-рациональных уравнений. Уравнение с двумя переменными. Линейное уравнение с двумя переменными, примеры решения уравнений в целых числах. Система уравнений с двумя переменными. Равносильность систем. Системы двух линейных уравнений с двумя переменными; решение подстановкой и сложением. Примеры решения систем нелинейных уравнений с двумя переменными. Решение текстовых задач алгебраическим способом. Декартовы координаты на плоскости. Графическая интерпретация уравнения с двумя переменными. График линейного уравнения с двумя переменными; угловой коэффициент прямой; условие параллельности прямых. Графики простейших нелинейных уравнений: парабола, гипербола, окружность. Графическая интерпретация систем уравнений с двумя переменными.

Неравенства. Числовые неравенства и их свойства. Неравенство с одной переменной. Равносильность неравенств. Линейные неравенства с одной переменной. Квадратные неравенства. Системы неравенств с одной переменной.

ФУНКЦИИ (65 ч)

Основные понятия. Зависимости между величинами. Представление зависимостей формулами. Понятие функции. Область определения и множество значений функции. Способы задания функции. График функции. Свойства функций, их отображение на графике. Примеры графиков зависимостей, отражающих реальные процессы.

Числовые функции. Функции, описывающие прямую и обратную пропорциональные зависимости, их графики и свойства. Линейная функция, ее график и свойства. Квадратичная функция, ее график и свойства. Степенные функции с натуральными показателями 2 и 3, их графики и свойства. Графики функций

Числовые последовательности. Понятие числовой последовательности. Задание последовательности рекуррентной формулой и формулой n-го члена. Арифметическая и геометрическая прогрессии. Формулы n-го члена арифметической и геометрической прогрессий, суммы первых n членов. Изображение членов арифметической и геометрической прогрессий точками координатной плоскости. Линейный и экспоненциальный рост. Сложные проценты.

ВЕРОЯТНОСТЬ И СТАТИСТИКА (50 ч.)

Описательная статистика. Представление данных в виде таблиц, диаграмм, графиков. Случайная изменчивость. Статистические характеристики набора данных: среднее арифметическое, медиана, наибольшее и наименьшее значения, размах. Представление о выборочном исследовании.

Случайные события и вероятность. Понятие о случайном опыте и случайном событии. Частота случайного события. Статистический подход к понятию вероятности. Вероятности противоположных событий. Достоверные и невозможные события. Равновозможность событий. Классическое определение вероятности.

Комбинаторика. Решение комбинаторных задач перебором вариантов. Комбинаторное правило умножения. Перестановки и факториал.

ГЕОМЕТРИЯ (260 ч.)

Наглядная геометрия. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Периметр многоугольника. Единицы измерения длины. Измерение длины отрезка, построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника и площадь квадрата. Приближенное измерение площадей фигур на клетчатой бумаге. Равновеликие фигуры. Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса. Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба. Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Геометрические фигуры. Прямые и углы. Точка, прямая, плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла. Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку. Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку. Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника. Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника. Четырехугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции. Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники. Окружность и круг. Дуга, хорда. Сектор, сегмент. Центральный угол, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные окружности правильного многоугольника. Геометрические преобразования. Понятие о равенстве фигур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии. Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Периметр многоугольника. Длина окружности, число пи; длина дуги окружности. Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности. Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур. Решение задач на вычисление и доказательство с использованием изученных формул.

Координаты. Уравнение прямой. Координаты середины отрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.

Векторы. Длина (модуль) вектора. Равенство векторов. Коллинеарные векторы. Координаты вектора. Умножение вектора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.

ЛОГИКА И МНОЖЕСТВА (10 ч.)

Теоретико-множественные понятия. Множество, элемент множества. Задание множеств перечислением элементов, характеристическим свойством. Стандартные обозначения числовых множеств. Пустое множество и его обозначение. Подмножество. Объединение и пересечение множеств. Иллюстрация отношений между множествами с помощью диаграмм Эйлера — Венна.

Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример. Понятие о равносильности, следовании, употребление логических связок если ..., то в том и только в том случае, логические связки и, или.

МАТЕМАТИКА В ИСТОРИЧЕСКОМ РАЗВИТИИ.

(Содержание раздела вводится по мере изучения других вопросов.)

История формирования понятия числа: натуральные числа, дроби, недостаточность рациональных чисел для геометрических измерений, иррациональные числа. Старинные системы записи чисел. Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Появление отрицательных чисел и нуля.  Магницкий. Л. Эйлер.

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений, неразрешимость в радикалах уравнений степени, большей четырех. Н. Тарталья, Дж. Кардано, Н. X. Абель, Э. Галуа.

Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости. Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма и Б. Паскаль. Я. Бернулли. А. Н. Колмогоров.

От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построение с помощью циркуля и линейки. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. Золотое сечение. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата. Софизмы, парадоксы.


Приложение.

Список литературы:

Для 5-6 классов:

а) учебники в печатной и электронной форме

1.Математика: 5 класс: учебник / А.Г. Мерзляк, В. Б. Полонский, М.С. Якир. - 4-е изд., пересмотр. - М.: Вентана - Граф, 2019

2 Математика: 6 класс: учебник / А.Г. Мерзляк, В. Б. Полонский, М.С. Якир; под ред. В.Е.Подольского. - 3-е изд., доп. - М.: Вентана - Граф, 2019

б) методические пособия

1 Математика: 5 класс: методическое пособие / Е.В.Буцко, А.Г. Мерзляк,

В.Б. Полонский, М.С. Якир. — М.: Вентана-Граф, 2012

2 Математика: 6 класс: методическое пособие / Е.В. Буцко, А.Г. Мерзляк,

В.Б. Полонский и др. — М.: Вентана-Граф, 2016

в) электронные приложения к учебникам

1 Мерзляк А. Г., Полонский В. Б., Якир М. С. «Математика. 5 класс. Электронное приложение к учебнику для общеобразовательных организаций»;

2 Мерзляк А. Г., Полонский В. Б., Якир М. С. «Математика. 6 класс. Электронное приложение к учебнику для общеобразовательных организаций».

г) дополнительная литература:

1 Математика: 5 класс: дидактические материалы: пособие для

учащихся общеобразовательных организаций / А.Г. Мерзляк, В.Б. Полонский, Е.М. Рабинович, М.С. Якир. — М.: Вентана-Граф, 2018

2 Математика: 6 класс: дидактические материалы: пособие для учащихся общеобразовательных организаций / А.Г. Мерзляк, В.Б. Полонский, Е.М. Рабинович, М.С. Якир. — М.: Вентана-Граф, 2018

3 «Задания для обучения и развития учащихся» 5 класс/ Лебединцева Е.А., Беленкова Е.Ю.

4 Блиц – опрос «Математика 5», / Е.Е. Тульчинская/ М. Мнемозина,

5 Задачи по математике для 5-6 классов / И.В. Баранова, З.Г.Барчукова / СПб «Специальная литература»

6 Самостоятельные и контрольные работы по математике 5 класс / А.П.

Ершова, В.В. Голобородько /М. «Илекса», 2015

Печатные пособия

1 Демонстрационный материал в соответствии с основными темами

программы обучения

2 Карточки с заданиями по математике

3 Портреты выдающихся деятелей математики

Учебно- практическое и учебно- лабораторное оборудование

1 Комплект чертежных инструментов: линейка, транспортир, угольник,

циркуль.

2 Комплекты планиметрических и стереометрических тел.

Технические средства обучения:

Компьютер

Мультимедийный проектор

Экран

Для 7-9 классов:

а) учебники в печатной и электронной форме

1. Алгебра.7, 8, 9 класс: учебник для общеобразовательных учреждений / Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков С.Б. Суворова. – М.: Просвещение, 2018.

2. Геометрия, 7-9: учебник для общеобразовательных учреждений / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. — М.: Просвещение, 2018.

б) методические пособия

1. . Атанасян Л.С. Изучение геометрии в 7-9 классах: метод, рекомендации: кн. для учителя / Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков и др. — М.: Просвещение, 2009.

2. Гаврилова Н.Ф. Универсальные поурочные разработки по геометрии. 7, 8, 9 класс. Дифференцированный подход: в помощь школьному учителю / Н.Ф Гаврилова.- ВАКО, 2013.

3. Макарычев Ю.Н. Изучение алгебры в 7-9 классах: пособие для учителей/ Ю.Н.Макарычев, Н.Г.Миндюк, С.Б.Суворова. - М,: Просвещение, 2011.

в) электронные приложения к учебникам

Атанасян Л.С. «Геометрия 7-9. Электронное приложение к учебнику для общеобразовательных организаций»

г) дополнительная литература:

1. Жохов В.И. Алгебра. Дидакт. Материалы. 8 класс/ В.И.Жохов, Ю.Н.Макарычев, Н.Г.Миндюк. — М.: Просвещение, 2018.

2.  Звавич Л.И. Алгебра. Дидакт. Материалы. 7 класс: пособие для учителей общеобразовательных организаций/ Л. И. Звавич, Л.В.Кузнецова, С.Б.Суворова. — М.: Просвещение, 2017.

3. Зив Б. Г. Геометрия: дидакт. материалы для 7, 8, 9 кл. / Б. Г. Зив, В. М. Мейлер. — М.: Просвещение, 2016

4. Макарычев Ю.Н. Алгебра: элементы статистики и теории вероятностей: учебное пособие для учащихся 7-9классов общеобразовательных учреждений / Ю.Н.Макарычев, Н.Г.Миндюк под ред. С.А.Теляковского. - М,: Просвещение, 2005.

5. Ященко И.В и др. ОГЭ 2018.Математика. 30 вариантов типовых тестовых заданий /И.В. Ященко, С.А.Шестаков, А.С. Трепалин, А.В. Семенов, П.И.Захаров. — М.: Экзамен, 2018.

Интернет-ресурсы для учителя и учащихся:

  1. Тестирование online: 5-11 классы : http://www.kokch.kts.ru/cdo/ 

http://uztest.ru/

2. Педагогическая мастерская: http://teacyer.fio.ru

3. Новые технологии в образовании: http://www.edu.secna.ru/main/

4. Сдам ГИА: http://sdamgia.ru/

  1. ФИПИ : http://old.fipi.ru
  2. www.math.ru
  3. www.allmath.ru
  4. http://schools.techno.ru/tech/index.html
  5. http://www.catalog.alledu.ru/predmet/m
  6. http://methmath.chat.ru/index.html


[1] Здесь и далее – распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

[2] Здесь и далее – знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

[3] Здесь и далее – распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

[4] Здесь и далее – знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

[5] Здесь и далее – знать определение понятия, знать и уметь доказывать свойства (признаки, если они есть) понятия, характеризовать связи с другими понятиями, представляя одно понятие как часть целостного комплекса, использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.


По теме: методические разработки, презентации и конспекты

Рабочая программа по математике для 5-го класса (ФГОС нового поколения)

Представлена рабочая программа по математике для 5 класса с учетом новых требований ФГОС, также дано развернутое тематическое планирование. ...

рабочая программа по математике (алгебре) для 7 класса (ФГОС)

Рабочая программа по математике (алгебре) 7 класс ФГОС (автор Зубарева И.И, Мордкович А.Г.) содержит краткую пояснительную записку и развернутое КТП....

Рабочая программа по математике (геометрии) для 7 класса (ФГОС)

Рабочая программа по математике (геометри) 7 класс ФГОС (автор Л.С.Атанасян и др.) содержит краткую пояснительную записку и  развернутое КТП....

рабочая программа по математике для 5-6 классов ФГОС

Рабочая программа разработана на 2017-2018 учебный год в соответствии с требованиями ФГОС для 5-6 классов (5 класс- 4,5 часа в неделю, 6 класс- 5 часов в неделю)...

Рабочая программа по математике в 5-6 классах. ФГОС

Рабочая программа по математике в 5-6 классах. ФГОС...

Рабочая программа по математике для 5-9 классов (ФГОС)

Данная программа разработана и реализуется в соответствии в ФГОС образования для обучающихся с умственной отсталостью (интеллектуальными нарушениями), вариант 1....

Рабочая программа по математике для 5-6 классов фгос

Рабочая программа по математике для 5-6 классов к учебнику Никольского на 170 часов по ФГОС...