Рабочая программа ФГОС 5-9
рабочая программа по математике (5, 6, 7, 8, 9 класс)
Скачать:
Вложение | Размер |
---|---|
phpuy7tyz_fgos-rabochaya-programma-po-matematike-5-7-klass-s-soderzh.doc | 356.5 КБ |
Предварительный просмотр:
I. Пояснительная записка
Рабочая программа составлена на основе:
- основной образовательной программы основного общего образования МКОУ Воздвиженской СОШ;
- Федерального государственного образовательного стандарта основного общего образования / М-во образования и науки Рос. Федерации . – М.: Просвещение, 2011 . – 48 с. – (Стандарты второго поколения).
с учетом:
- Примерной программы основного общего образования по математике (Сборник нормативных документов. Математика / Программа подготовлена институтом стратегических исследований в образовании РАО. Научные руководители — член-корреспондент РАО А. М. Кондаков, академик РАО Л. П. Кезина, Составитель — Е. С. Савинов.),
и ориентирована на использование учебно-методического комплекта:
- Виленкин, Н. Я. Математика. 5,6 кл. : учебник для общеобразовательных учреждений/ Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. – М. : Мнемозина, 2011. – 280 с.
- Алгебра-7-9: учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2010год.
Звавич, Л.И. Алгебра: дидакт. материалы для 7 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б. Суворова. — М.: Просвещение,2008.
- Макарычев, Ю.Н. Алгебра: элементы статистики и теории вероятностей: учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2006
- Геометрия, 7-9: Учеб. для общеобразоват. учреждений / Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. – М. : Просвещение, 2009.
- Контрольные работы по геометрии: 7,8,9 кл. К учебнику Л.С Атанасяна/ Мельникова Н.Б..- М.: издание «Экзамен», 2010
- Рабочие тетради по математике. 5 и 6 класс. К учебнику Н.Я.Виленкина «Математика. 5 и 6 класс». М.: Экзамен, 2011
- Дидактические материалы по алгебре для 7 класса. – М.: Просвещение, 2008
- Дидактические материалы по математике для 5,6 класса. – М.: Просвещение, 2009
- Изучение геометрии в 7, 8, 9 классах: Метод. рекомендации к учебн.: Кн. для учителя / Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков и др. – М. : Просвещение, 2001.
- Поурочное планирование по алгебре 8 класс. К учебнику Ю.Н. Макарычева, Н.Г.Миндюк .- М.: Издательство « Экзамен», 2008
Программа по математике для основной школы составлена на основе Фундаментального ядра содержания общего образования и Требований к результатам основного общего образования, представленных в федеральном государственном образовательном стандарте общего образования.
Программа по математике для основной школы включает следующие разделы: пояснительную записку с требованиями к результатам обучения; содержание курса с перечнем разделов с указанием числа часов, отводимого на их изучение; тематическое планирование с определением основных видов учебной деятельности школьников; рекомендации по оснащению учебного процесса.
Цели и образовательные результаты представлены на нескольких уровнях - личностном, метапредметном и предметном.
Общая характеристика учебного предмета
Математика является одним из основных, системообразующих предметов школьного образования. Такое место математики среди школьных предметов обусловливает и её особую роль с точки зрения всестороннего развития личности учащихся. При этом когнитивная составляющая данного курса позволяет обеспечить как требуемый государственным стандартом необходимый уровень математической подготовки, так и повышенный уровень, являющийся достаточным для углубленного изучения предмета.
Вместе с тем очевидно, что положение с обучением предмету «Математика» в основной школе требует к себе самого серьёзного внимания. Анализ состояния преподавания свидетельствует, что школа не полностью обеспечивает функциональную грамотность учащихся.
В основу настоящей программы положены педагогические и дидактические принципы вариативного развивающего образования и современные дидактико-психологические тенденции, связанные с вариативным развивающим образованием и требованиями ФГОС.
А. Личностно ориентированные принципы: принцип адаптивности; принцип развития; принцип комфортности процесса обучения.
Б. Культурно ориентированные принципы: принцип целостной картины мира; принцип целостности содержания образования; принцип систематичности; принцип смыслового отношения к миру; принцип ориентировочной функции знаний; принцип опоры на культуру как мировоззрение и как культурный стереотип.
В. Деятельностно ориентированные принципы: принцип обучения деятельности; принцип управляемого перехода от деятельности в учебной ситуации к деятельности в жизненной ситуации; принцип перехода от совместной учебно-познавательной деятельности к самостоятельной деятельности учащегося (зона ближайшего развития); принцип опоры на процессы спонтанного развития; принцип формирования потребности в творчестве и умений творчества.
Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:
1) в направлении личностного развития:
- Формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
- Развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
- Формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
- Воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
- Формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
- Развитие интереса к математическому творчеству и математических способностей;
2) в метапредметном направлении:
- Развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
- Формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;
3) в предметном направлении:
- Овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смежных дисциплин, применения в повседневной жизни;
- Создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
В организации учебно – воспитательного процесса важную роль играют задачи. Они являются и целью, и средством обучения. Важным условием правильной организации этого процесса является выбор рациональной системы методов и приемов обучения, специфики решаемых образовательных и воспитательных задач.
задачи изучения курса математике в 5-6 классах
- систематическое развитие понятия числа,
- выработка умений выполнять устно и письменно арифметические действия над числами,
- переводить практические задачи на язык математики,
- подготовка учащихся к изучению систематических курсов алгебры и геометрии. Курс строится на индуктивной основе с привлечением элементов дедуктивных рассуждений. В ходе изучения курса учащиеся развивают навыки вычислений с натуральными числами, овладевают навыками с обыкновенными и десятичными дробями, положительными и отрицательными числами, получают представление об использовании букв для записи выражений и свойств арифметических действий, составлении уравнений, продолжают знакомство с геометрическими понятиями, приобретают навыки построения геометрических фигур.
задачи изучения курса математике в 7 - 9
- развитие вычислительных умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов,
- усвоение аппарата уравнений и неравенств как основного средства математического моделирования задач, осуществление функциональной подготовки школьников. Курс характеризуется повышением теоретческого уровня обучения, постепенным усилием роли теоретических обобщений и дедуктивных заключений. Прикладная направленность раскрывает возможность изучать и решать практические задачи.
задачи изучения курса геометрии в 7-9
- систематическое изучение свойств геометрических фигур на плоскости,
- формирование пространственных представлений,
- развитие логического мышления и подготовка аппарата, необходимого для изучения смежных дисциплин и курса стереометрии в старших классах.
Содержание математического образования в основной школе формируется на основе фундаментального ядра школьного математического образования. В программе оно представлено в виде совокупности содержательных разделов, конкретизирующих соответствующие блоки фундаментального ядра применительно к основной школе. Программа регламентирует объем материала, обязательного для изучения в основной школе, а также дает его распределение между 5—6 и 7—9 классами.
Содержание математического образования в основной школе включает следующие разделы: арифметика, алгебра, функции, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей общеинтеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.
Содержание раздела «Арифметика» служит базой для дальнейшего изучения учащимися математики, способствует развитию их логического мышления, формированию умения пользоваться алгоритмами, а также приобретению практических навыков, необходимых в повседневной жизни. Развитие понятия о числе в основной школе связано с рациональными и иррациональными числами, формированием первичных представлений о действительном числе. Завершение числовой линии (систематизация сведений о действительных числах, о комплексных числах), так же как и более сложные вопросы арифметики (алгоритм Евклида, основная теорема арифметики), отнесено к ступени общего среднего (полного) образования.
Содержание раздела «Алгебра» направлено на формирование у учащихся математического аппарата для решения задач из разных разделов математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей процессов и явлений реального мира. В задачи изучения алгебры входят также развитие алгоритмического мышления, необходимого, в частности, для усвоения курса информатики, овладения навыками дедуктивных рассуждений. Преобразование символьных форм вносит специфический вклад в развитие воображения учащихся, их способностей к математическому творчеству. В основной школе материал группируется вокруг рациональных выражений, а вопросы, связанные с иррациональными выражениями, с тригонометрическими функциями и преобразованиями, входят в содержание курса математики на старшей ступени обучения в школе.
Содержание раздела «Функции» нацелено на получение школьниками конкретных знаний о функции как важнейшей математической модели для описания и исследования разнообразных процессов. Изучение этого материала способствует развитию у учащихся умения использовать различные языки математики (словесный, символический, графический), вносит вклад в формирование представлений о роли математики в развитии цивилизации и культуры.
Раздел «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим прежде всего для формирования у учащихся функциональной грамотности — умений воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, проводить простейшие вероятностные расчеты. Изучение основ комбинаторики позволит учащимся рассматривать случаи, осуществлять перебор и подсчет числа вариантов, в том числе в простейших прикладных задачах.
При изучении статистики и вероятности расширяются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.
Цель содержания раздела «Геометрия» — развить у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение как в различных математических дисциплинах, так и в смежных предметах.
Особенностью раздела «Логика и множества» является то, что представленный в нем материал преимущественно изучается и используется распределенно — в ходе рассмотрения различных вопросов курса. Соответствующий материал нацелен на математическое развитие учащихся, формирование у них умения точно, сжато и ясно излагать мысли в устной и письменной речи.
Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.
III. Описание места учебного предмета «Математика» в учебном плане
На изучение математики в основной школе отводит 5 учебных часов в неделю в течение каждого года обучения, всего 850 уроков.
В соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования предмет «Математика» изучается с 5-го по 9-й класс в виде следующих учебных курсов: 5–6 класс – «Математика» (интегрированный предмет), 7–9 классах предмет «Математика» (Алгебра и Геометрия).
Распределение учебного времени между этими предметами представлено в таблице.
Классы | Предметы математического цикла | Количество часов на ступени основного образования |
5-6 | Математика | 350 |
7-9 | Математика (Алгебра) | 315 |
Математика (Геометрия) | 210 | |
Всего | 875 |
Часть, формируемая участниками образовательного процесса:
Года обучения | Кол-во часов в неделю | Кол-во учебных недель | Всего часов за уч. г. | |
5-6 класс | Основы проектной деятельности учащихся по математике | 1 | 34 | 68 |
8 класс | Основы исследовательской деятельности учащихся по математике | 1 | 36 | 36 |
9 класс | Проектно-исследовательская деятельность по математике | 1 | 34 | 34 |
138 часа за курс |
Предмет «Математика» в 5—6 классах включает арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.
Предмет «Алгебра» включает некоторые вопросы арифметики, развивающие числовую линию 5—6 классов, собственно алгебраический материал, элементарные функции, а также элементы вероятностно-статистической линии.
В рамках учебного предмета «Геометрия» традиционно изучаются евклидова геометрия, элементы векторной алгебры, геометрические преобразования.
Изучение вероятностно-статистического материала отнесено к 5—6, к 7—9 классам
IV. Личностные, метапредметные и предметные результаты освоения учебного
предмета «Математика»
5–9 классы
Личностными результатами изучения предмета «Математика» (в виде следующих учебных курсов: 5–6 класс – «Математика», 7–9 класс – «Математика» («Алгебра» и «Геометрия») являются следующие качества:
– независимость и критичность мышления;
– воля и настойчивость в достижении цели.
Средством достижения этих результатов является:
– система заданий учебников;
– представленная в учебниках в явном виде организация материала по принципу минимакса;
– использование совокупности технологий, ориентированных на развитие самостоятельности и критичности мышления: технология системно- деятельностного подхода в обучении, технология оценивания.
Метапредметными результатами изучения курса «Математика» является формирование универсальных учебных действий (УУД).
Регулятивные УУД:
5–6-й классы
– самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности, выбирать тему проекта;
– выдвигать версии решения проблемы, осознавать (и интерпретировать в случае необходимости) конечный результат, выбирать средства достижения цели из предложенных, а также искать их самостоятельно;
– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
– работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно (в том числе и корректировать план);
– в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.
7–9-й классы
– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;
– выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;
– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);
– подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;
– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);
– планировать свою индивидуальную образовательную траекторию;
– работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);
– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;
– в ходе представления проекта давать оценку его результатам;
– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
– уметь оценить степень успешности своей индивидуальной образовательной деятельности;
– давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).
Средством формирования регулятивных УУД служат технология системно- деятельностного подхода на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).
Познавательные УУД:
5–9-й классы
– анализировать, сравнивать, классифицировать и обобщать факты и явления;
– осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);
– строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;
– создавать математические модели;
– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);
– вычитывать все уровни текстовой информации.
– уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.
– понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.
– самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;
– уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.
Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника.
– Использование математических знаний для решения различных математических задач и оценки полученных результатов.
– Совокупность умений по использованию доказательной математической речи.
– Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.
– Умения использовать математические средства для изучения и описания реальных процессов и явлений.
– Независимость и критичность мышления.
– Воля и настойчивость в достижении цели.
Коммуникативные УУД:
5–9-й классы
– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);
– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;
– в дискуссии уметь выдвинуть контраргументы;
– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
– уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.
Средством формирования коммуникативных УУД служат технология проблемного обучения, организация работы в малых группах, также использование на уроках технологии личностно- ориентированного и системно- деятельностного обучения.
Предметными результатами изучения предмета «Математика» являются следующие умения.
5-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание:
- названий и последовательности чисел в натуральном ряду в пределах 1 000 000 (с какого числа начинается этот ряд, как образуется каждое следующее число в этом ряду);
- как образуется каждая следующая счётная единица;
- названия и последовательность разрядов в записи числа;
- названия и последовательность первых трёх классов;
- сколько разрядов содержится в каждом классе;
- соотношение между разрядами;
- сколько единиц каждого класса содержится в записи числа;
- как устроена позиционная десятичная система счисления;
- единицы измерения величин (длина, масса, время, площадь), соотношения между ними;
- десятичных дробях и правилах действий с ними;
- сравнивать десятичные дроби;
- выполнять операции над десятичными дробями;
- преобразовывать десятичную дробь в обыкновенную и наоборот;
- округлять целые числа и десятичные дроби;
- находить приближённые значения величин с недостатком и избытком;
- выполнять приближённые вычисления и оценку числового выражения;
- функциональной связи между группами величин (цена, количество, стоимость; скорость, время, расстояние; производительность труда, время работы, работа).
Выполнять устные вычисления (в пределах 1 000 000) в случаях, сводимых к вычислениям в пределах 100, и письменные вычисления в остальных случаях; выполнять проверку правильности вычислений;
- выполнять умножение и деление с 1000;
- вычислять значения числовых выражений, содержащих 3–4 действия со скобками и без них;
- решать простые и составные текстовые задачи;
- выписывать множество всевозможных результатов (исходов) простейших случайных экспериментов;
- находить вероятности простейших случайных событий;
- решать удобным для себя способом (в том числе и с помощью таблиц и графов) комбинаторные задачи: на перестановку из трёх элементов, правило произведения, установление числа пар на множестве из 3–5 элементов;
- решать удобным для себя способом (в том числе и с помощью таблиц и графов) логические задачи, содержащие не более трёх высказываний;
- читать информацию, записанную с помощью линейных, столбчатых и круговых диаграмм;
- строить простейшие линейные, столбчатые и круговые диаграммы;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
6-й класс
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
- раскладывать натуральное число на простые множители;
- находить наибольший общий делитель и наименьшее общее кратное нескольких чисел;
- отношениях и пропорциях; основном свойстве пропорции;
- прямой и обратной пропорциональных зависимостях и их свойствах;
- процентах;
- целых и дробных отрицательных числах; рациональных числах;
- правиле сравнения рациональных чисел;
- правилах выполнения операций над рациональными числами; свойствах операций.
- делить число в данном отношении;
- находить неизвестный член пропорции;
- находить данное количество процентов от числа и число по известному количеству процентов от него;
- находить, сколько процентов одно число составляет от другого;
- увеличивать и уменьшать число на данное количество процентов;
- решать текстовые задачи на отношения, пропорции и проценты;
- сравнивать два рациональных числа;
- выполнять операции над рациональными числами, использовать свойства операций для упрощения вычислений;
- решать комбинаторные задачи с помощью правила умножения;
- находить вероятности простейших случайных событий;
- решать простейшие задачи на осевую и центральную симметрию;
- решать простейшие задачи на разрезание и составление геометрических фигур;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
7-й класс.
Алгебра
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
- натуральных, целых, рациональных, иррациональных, действительных числах;
- степени с натуральными показателями и их свойствах;
- одночленах и правилах действий с ними;
- многочленах и правилах действий с ними;
- формулах сокращённого умножения;
- тождествах; методах доказательства тождеств;
- линейных уравнениях с одной неизвестной и методах их решения;
- системах двух линейных уравнений с двумя неизвестными и методах их решения.
- Выполнять действия с одночленами и многочленами;
- узнавать в выражениях формулы сокращённого умножения и применять их;
- раскладывать многочлены на множители;
- выполнять тождественные преобразования целых алгебраических выражений;
- доказывать простейшие тождества;
- находить число сочетаний и число размещений;
- решать линейные уравнения с одной неизвестной;
- решать системы двух линейных уравнений с двумя неизвестными методом подстановки и методом алгебраического сложения;
- решать текстовые задачи с помощью линейных уравнений и систем;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
7-й класс.
Геометрия
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
- основных геометрических понятиях: точка, прямая, плоскость, луч, отрезок, ломаная, многоугольник;
- определении угла, биссектрисы угла, смежных и вертикальных углов;
- свойствах смежных и вертикальных углов;
- определении равенства геометрических фигур; признаках равенства треугольников;
- геометрических местах точек; биссектрисе угла и серединном перпендикуляре к отрезку как геометрических местах точек;
- определении параллельных прямых; признаках и свойствах параллельных прямых;
- аксиоме параллельности и её краткой истории;
- формуле суммы углов треугольника;
- определении и свойствах средней линии треугольника;
- теореме Фалеса.
- Применять свойства смежных и вертикальных углов при решении задач;
- находить в конкретных ситуациях равные треугольники и доказывать их равенство;
- устанавливать параллельность прямых и применять свойства параллельных прямых;
- применять теорему о сумме углов треугольника;
- использовать теорему о средней линии треугольника и теорему Фалеса при решении задач;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
8-й класс.
Алгебра
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
- алгебраической дроби; основном свойстве дроби;
- правилах действий с алгебраическими дробями;
- степенях с целыми показателями и их свойствах;
- стандартном виде числа;
- функциях , , , их свойствах и графиках;
- понятии квадратного корня и арифметического квадратного корня;
- свойствах арифметических квадратных корней;
- функции , её свойствах и графике;
- формуле для корней квадратного уравнения;
- теореме Виета для приведённого и общего квадратного уравнения;
- основных методах решения целых рациональных уравнений: методе разложения на множители и методе замены неизвестной;
- методе решения дробных рациональных уравнений;
- основных методах решения систем рациональных уравнений.
- Сокращать алгебраические дроби;
- выполнять арифметические действия с алгебраическими дробями;
- использовать свойства степеней с целыми показателями при решении задач;
- записывать числа в стандартном виде;
- выполнять тождественные преобразования рациональных выражений;
- строить графики функций , , и использовать их свойства при решении задач;
- вычислять арифметические квадратные корни;
- применять свойства арифметических квадратных корней при решении задач;
- строить график функции и использовать его свойства при решении задач;
- решать квадратные уравнения;
- применять теорему Виета при решении задач;
- решать целые рациональные уравнения методом разложения на множители и методом замены неизвестной;
- решать дробные уравнения;
- решать системы рациональных уравнений;
- решать текстовые задачи с помощью квадратных и рациональных уравнений и их систем;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
8-й класс.
Геометрия
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
- определении параллелограмма, ромба, прямоугольника, квадрата; их свойствах и признаках;
- определении трапеции; элементах трапеции; теореме о средней линии трапеции;
- определении окружности, круга и их элементов;
- теореме об измерении углов, связанных с окружностью;
- определении и свойствах касательных к окружности; теореме о равенстве двух касательных, проведённых из одной точки;
- определении вписанной и описанной окружностей, их свойствах;
- определении тригонометрические функции острого угла, основных соотношений между ними;
- приёмах решения прямоугольных треугольников;
- тригонометрических функциях углов от 0 до 180°;
- теореме косинусов и теореме синусов;
- приёмах решения произвольных треугольников;
- формулах для площади треугольника, параллелограмма, трапеции;
- теореме Пифагора.
- Применять признаки и свойства параллелограмма, ромба, прямоугольника, квадрата при решении задач;
- решать простейшие задачи на трапецию;
- находить градусную меру углов, связанных с окружностью; устанавливать их равенство;
- применять свойства касательных к окружности при решении задач;
- решать задачи на вписанную и описанную окружность;
- выполнять основные геометрические построения с помощью циркуля и линейки;
- находить значения тригонометрических функций острого угла через стороны прямоугольного треугольника;
- применять соотношения между тригонометрическими функциями при решении задач; в частности, по значению одной из функций находить значения всех остальных;
- решать прямоугольные треугольники;
- сводить работу с тригонометрическими функциями углов от 0 до 180° к случаю острых углов;
- применять теорему косинусов и теорему синусов при решении задач;
- решать произвольные треугольники;
- находить площади треугольников, параллелограммов, трапеций;
- применять теорему Пифагора при решении задач;
- находить простейшие геометрические вероятности;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
9 класс.
Алгебра
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
- свойствах числовых неравенств;
- методах решения линейных неравенств;
- свойствах квадратичной функции;
- методах решения квадратных неравенств;
- методе интервалов для решения рациональных неравенств;
- методах решения систем неравенств;
- свойствах и графике функции при натуральном n;
- определении и свойствах корней степени n;
- степенях с рациональными показателями и их свойствах;
- определении и основных свойствах арифметической прогрессии; формуле для нахождения суммы её нескольких первых членов;
- определении и основных свойствах геометрической прогрессии; формуле для нахождения суммы её нескольких первых членов;
- формуле для суммы бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы.
- Использовать свойства числовых неравенств для преобразования неравенств;
- доказывать простейшие неравенства;
- решать линейные неравенства;
- строить график квадратичной функции и использовать его при решении задач;
- решать квадратные неравенства;
- решать рациональные неравенства методом интервалов;
- решать системы неравенств;
- строить график функции при натуральном n и использовать его при решении задач;
- находить корни степени n;
- использовать свойства корней степени n при тождественных преобразованиях;
- находить значения степеней с рациональными показателями;
- решать основные задачи на арифметическую и геометрическую прогрессии;
- находить сумму бесконечной геометрической прогрессии со знаменателем, меньшим по модулю единицы;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
9-й класс.
Геометрия
Использовать при решении математических задач, их обосновании и проверке найденного решения знание о:
- признаках подобия треугольников;
- теореме о пропорциональных отрезках;
- свойстве биссектрисы треугольника;
- пропорциональных отрезках в прямоугольном треугольнике;
- пропорциональных отрезках в круге;
- теореме об отношении площадей подобных многоугольников;
- свойствах правильных многоугольников; связи между стороной правильного многоугольника и радиусами вписанного и описанного кругов;
- определении длины окружности и формуле для её вычисления;
- формуле площади правильного многоугольника;
- определении площади круга и формуле для её вычисления; формуле для вычисления площадей частей круга;
- правиле нахождения суммы и разности векторов, произведения вектора на скаляр; свойства этих операций;
- определении координат вектора и методах их нахождения;
- правиле выполнений операций над векторами в координатной форме;
- определении скалярного произведения векторов и формуле для его нахождения;
- связи между координатами векторов и координатами точек;
- векторным и координатным методах решения геометрических задач.
- формулах объёма основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса.
- Применять признаки подобия треугольников при решении задач;
- решать простейшие задачи на пропорциональные отрезки;
- решать простейшие задачи на правильные многоугольники;
- находить длину окружности, площадь круга и его частей;
- выполнять операции над векторами в геометрической и координатной форме;
- находить скалярное произведение векторов и применять его для нахождения различных геометрических величин;
- решать геометрические задачи векторным и координатным методом;
- применять геометрические преобразования плоскости при решении геометрических задач;
- находить объёмы основных пространственных геометрических фигур: параллелепипеда, куба, шара, цилиндра, конуса;
- находить решения «жизненных» (компетентностных) задач, в которых используются математические средства;
- создавать продукт (результат проектной деятельности), для изучения и описания которого используются математические средства.
V. Содержательный раздел
Содержание учебного курса по математике для 5 класса
Натуральные числа и нуль
Натуральный ряд чисел и его свойства
Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.
Запись и чтение натуральных чисел
Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.
Округление натуральных чисел
Необходимость округления. Правило округления натуральных чисел.
Сравнение натуральных чисел, сравнение с числом 0
Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулём, математическая запись сравнений, способы сравнения чисел.
Действия с натуральными числами
Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.
Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.
Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических действий.
Степень с натуральным показателем
Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.
Числовые выражения
Числовое выражение и его значение, порядок выполнения действий.
Деление с остатком
Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.
Обыкновенные дроби
Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число). Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот.
Десятичные дроби
Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.
Проценты
Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.
Решение текстовых задач
Единицы измерений: длины, площади, объёма, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.
Задачи на все арифметические действия
Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.
Наглядная геометрия
Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.
Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.
Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.
Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.
Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.
Решение практических задач с применением простейших свойств фигур.
История математики
Появление цифр, букв, иероглифов в процессе счёта и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией.
Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел.
Возникновение математики как науки, этапы её развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.
Содержание учебного курса по математике для 6 класса
Свойства и признаки делимости
Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.
Разложение числа на простые множители
Простые и составные числа, решето Эратосфена.
Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.
Алгебраические выражения
Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.
Делители и кратные
Делитель и его свойства, общий делитель двух более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.
Дроби
Обыкновенные дроби
Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.
Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.
Арифметические действия со смешанными дробями.
Арифметические действия с дробными числами.
Способы рационализации вычислений и их применение при выполнении действий.
Отношение двух чисел
Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.
Среднее арифметическое чисел
Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.
Диаграммы
Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.
Рациональные числа
Положительные и отрицательные числа
Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.
Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.
Понятие функции
Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты».
Решение текстовых задач
Задачи на движение, работу и покупки
Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.
Задачи на части, доли, проценты
Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.
Логические задачи
Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.
Основные методы решения текстовых задач: арифметический, перебор вариантов.
История математики
Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена.
Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему ?
Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Л. Магницкий.
Содержание курса математики в 7 классе
Алгебра
Тождественные преобразования
Числовые и буквенные выражения
Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.
Целые выражения
Степень с натуральным показателем и её свойства. Преобразования выражений, содержащих степени с натуральным показателем.
Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращённого умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращённого умножения. Квадратный трёхчлен, разложение квадратного трёхчлена на множители.
Уравнения и неравенства
Равенства
Числовое равенство. Свойства числовых равенств. Равенство с переменной.
Уравнения
Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной).
Линейное уравнение и его корни
Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.
Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, чётность/нечётность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по её графику.
Представление об асимптотах.
Непрерывность функции. Кусочно заданные функции.
Линейная функция
Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от её углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.
Системы уравнений
Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными.
Понятие системы уравнений. Решение системы уравнений.
Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки.
Системы линейных уравнений с параметром.
Статистика
Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.
Геометрия
Фигуры в геометрии и в окружающем мире
Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура».
Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и её свойства, виды углов, многоугольники, круг.
Треугольники. Высота, медиана, биссектриса, средняя линия треугольник. Равнобедренный треугольник, его свойства и признаки. Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство треугольника.
Равенство фигур
Свойства равных треугольников. Признаки равенства треугольников.
Параллельность прямых
Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.
Перпендикулярные прямые
Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.
Величины
Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.
Измерения и вычисления
Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей.
Геометрические построения
Геометрические построения для иллюстрации свойств геометрических фигур.
Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,
Построение треугольников по трём сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам.
История математики
Возникновение математики как науки, этапы её развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.
Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора
Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П.Ферма, Ф. Виет, Р. Декарт.
Содержание курса математики в 8 классе
Алгебра
Числа
Рациональные числа
Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.
Иррациональные числа
Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа . Применение в геометрии. Сравнение иррациональных чисел. Множество действительных чисел.
Тождественные преобразования
Дробно-рациональные выражения
Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень.
Преобразование выражений, содержащих знак модуля.
Квадратные корни
Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.
Квадратное уравнение и его корни
Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений: использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.
Дробно-рациональные уравнения
Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.
Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.
Простейшие иррациональные уравнения вида , .
Уравнения вида .Уравнения в целых числах.
Неравенства
Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.
Неравенство с переменной. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной).
Решение линейных неравенств.
Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.
Решение целых и дробно-рациональных неравенств методом интервалов.
Системы неравенств
Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.
Обратная пропорциональность
Свойства функции . Гипербола.
Статистика
Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.
Геометрия
Многоугольники
Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники. Правильные многоугольники.
Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.
Средняя линия треугольника.
Окружность, круг
Их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства. Вписанные и описанные окружности для треугольников, четырёхугольников, правильных многоугольников.
Подобие
Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.
Взаимное расположение прямой и окружности, двух окружностей.
Понятие о площади плоской фигуры и её свойствах. Измерение площадей. Единицы измерения площади.
Измерения и вычисления
Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины окружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора.
Геометрические построения
Деление отрезка в данном отношении.
История математики
Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П.Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырёх. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э.Галуа.
Содержание курса математики в 9 классе
Квадратичная функция
Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.
Графики функций. Преобразование графика функции для построения графиков функций вида .
Графики функций , , , .
Квадратное уравнение и его корни
. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.
Последовательности и прогрессии
Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и её свойства. Геометрическая прогрессия. Формула общего члена и суммы n первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.
Случайные события
Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.
Элементы комбинаторики
Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.
Случайные величины
Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.
Геометрия
Измерения и вычисления
Теорема синусов. Теорема косинусов.
Векторы и координаты на плоскости
Векторы
Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.
Координаты
Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.
Применение векторов и координат для решения простейших геометрических задач.
Геометрические фигуры в пространстве (объёмные тела)
Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.
Представление об объёме и его свойствах. Измерение объёма. Единицы измерения объёмов.
История математики
Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.
Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.
Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.
От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.
Геометрия и искусство. Геометрические закономерности окружающего мира.
Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.
Роль российских учёных в развитии математики: Л.Эйлер. Н.И.Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н.Колмогоров.
Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н.Крылов. Космическая программа и М.В.Келдыш.
VII. Описание учебно-методического и материально-технического обеспечения
образовательного процесса по предмету «Математика»
Номер | название | авторы | классы | Наличие электронного приложения |
I. Учебники | ||||
1 | « Математика» М.: «Мнемозина», 2011г. | Н.Я. Виленкин, В.И.Жохов, | 5-6 | Диск с презентациями для 5кл |
2 | Алгебра Просвещение, 2010год | Ю.Н Макарычев | 7-9 | 8 кл диск |
3 | Геометрия Москва «Просвещение» 2009 г. | Л.С.Атанасян | 7-9 | Диск 7-9 кл |
II. Учебно – методические пособия | ||||
Макарычев, Ю.Н. Алгебра: элементы статистики и теории вероятностей: учеб пособие для обучающихся общеобразоват. учреждений / | Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2006 | 7-9 кл. | ||
Звавич, Л.И. Алгебра: дидакт. материалы для. /— М.: Просвещение,2008. | Л. И. Звавич, Л. В. Кузнецова, С. Б. Суворова. | 7 кл | нет | |
Геометрия,: Учеб. для общеобразоват. учреждений /– М. : Просвещение, 2009. | Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. | 7-9 | нет | |
Изучение геометрии: Метод. рекомендации к учебн.: Кн. для учителя /. – М. : Просвещение, 2001. | Л. С. Атанасян, В. Ф. Бутузов, Ю. А. Глазков и др | 7, 8, 9 | нет | |
Поурочное планирование по алгебре 8 класс.- М.: Издательство « Экзамен», 2008 | . К учебнику Ю.Н. Макарычева, Н.Г.Миндюк | 8 | нет | |
Контрольные работы по геометрии: 9 кл. К учебнику Л.С Атанасяна.- М.: издание «Экзамен», 2010 | Мельникова Н.Б. | 9 | нет | |
геометрия 7-9 класс преподавание курса геометрии по учебнику А.В. Погорелова.-М.: изд. «Экзамен», 2008 г. | Березина Л.Ю. | 7-9 | нет | |
Элементы статистики и теории вероятностей. | Ю.Н. Макарычев, Н.Г. Миндюк | 7-9 | нет | |
рабочая тетрадь по математике. 5 и 6 класс. К учебнику Н.Я.Виленкина «Математика. 5 и 6 класс». М.: Экзамен, 2011. | Ерина Т.М. | 5 и 6 | нет | |
Математика. тематические тесты Просвещение,2014 | .П.В. Чулков | 5 и 6 | ||
Дидактические материалы по геометрии для 7,8,9 класса. – М.: Просвещение, 2009 | Зив.Б.Г., Мейлер В.М. | 7,8,9 | ||
Дидактические материалы по математике для 5,6 класса. – М.: Просвещение, 2009 | Чесноков А.С., Нешков К.И. | 5,6 | ||
Дидактические материалы по алгебре для 7 класса. – М.: Просвещение, 2008 | Звавич Л.И., Кузнецова Л.В. Суворова С.Б. | 7 | ||
Примерная программа основного общего образования по математике (Сборник нормативных документов. Математика / Программа подготовлена институтом стратегических исследований в образовании РАО.; | Научные руководители — член-корреспондент РАО А. М. Кондаков, академик РАО Л. П. Кезина, Составитель — Е. С. Савинов.) | |||
Рабочие программы по математике. 2-е изд., Москва, « ВАКО», 2012год. | Составители: Н.В.Панина, Ю.А.Седавкина. | 5-6 | ||
Рабочие программы. Геометрия 7-11 классы. УМК Л.С.Атанасяна и других. Москва «Просвещение» 2012 год. | Составители: Л.С.Атанасян, В.Ф. Бутузов и др. |
Минимальный набор учебного оборудования включает:
1. Библиотечный фонд
- -нормативные документы: Примерная программа основного общего образования по математике, Планируемые результаты освоения программы основного общего образования по математике;
- -авторские программы по курсам математики;
- -учебники: по математике для 5-6 классов, по алгебре и геометрии для 7-9 классов;
- -учебные пособия: рабочие тетради, дидактические материалы, сборники контрольных работ;
- -пособия для подготовки и/или проведения государственной аттестации по математике за курс основной школы;
- -учебные пособия по элективным курсам;
- -научная, научно-популярная, историческая литература;
- -справочные пособия (энциклопедии, словари, справочники по математике и т.п.);
- -методические пособия для учителя.
2.Печатные пособия
- -таблицы по математике для 5-6 классов, по алгебре и геометрии для 7-9 классов;
- -портреты выдающихся деятелей математики.
3.Информационные средства
- -мультимедийные обучающие программы и электронные учебные издания по основным разделам курса математики;
- -электронная база данных для создания тематических и итоговых разноуровневых тренировочных и проверочных материалов для организации фронтальной и индивидуальной работы;
- -инструментальная среда по математике.
5.Технические средства обучения
- - компьютер;
- -мультимедиапроектор;
- -интерактивная доска.
6.Учебно- практическое и учебно- лабораторное оборудование
- -комплект чертёжных инструментов.
- - комплекты планиметрических и стереометрических тел (демонстрационных и раздаточных),
- - комплекты для моделирования (цветная бумага, картон, калька, клей, ножницы, пластилин).
Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов развития:
1) в личностном направлении:
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
- креативность мышления, инициатива, находчивость, активность при решении математических задач;
- умение контролировать процесс и результат учебной математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
2) в метапредметном направлении:
- первоначальные представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
3) в предметном направлении:
- овладение базовым понятийным аппаратом по основным разделам содержания, представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
- умение работать с математическим текстом (анализировать, извлекать необходимую информацию), грамотно применять математическую терминологию и символику, использовать различные языки математики;
- умение проводить классификации, логические обоснования, доказательства математических утверждений;
- умение распознавать виды математических утверждений (аксиомы, определения, теоремы и др.), прямые и обратные теоремы;
- развитие представлений о числе и числовых системах от натуральных до действительных чисел, овладение навыками устных, письменных, инструментальных вычислений;
- овладение символьным языком алгебры, приемами выполнения тождественных преобразований рациональных выражений, решения уравнений, систем уравнений, неравенств и систем неравенств, умение использовать идею координат на плоскости для интерпретации уравнений, неравенств, систем, умение применять алгебраические преобразования, аппарат уравнений и неравенств для решения задач из различных разделов курса;
- овладение системой функциональных понятий, функциональным языком и символикой, умение на основе функционально-графических представлений описывать и анализировать реальные зависимости;
- овладение основными способами представления и анализа статистических данных; наличие представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о вероятностных моделях;
- овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
- усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне — о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
- умения измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;
- умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.
Результаты обучения представлены в Требованиях к уровню подготовки и задают систему итоговых результатов обучения, которых должны достигать все учащиеся, оканчивающие основную школу, и достижение которых является обязательным условием положительной аттестации ученика за курс основной школы. Эти требования структурированы по трем компонентам: «знать/понимать», «уметь», «использовать приобретенные знания и умения в практической деятельности и повседневной жизни». При этом последние два компонента представлены отдельно по каждому из разделов содержания.
ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ
В результате изучения математики ученик должен
знать/понимать:
Математика. Алгебра. Геометрия.
Натуральные числа. Дроби. Рациональные числа
Выпускник научится:
- понимать особенности десятичной системы счисления;
- оперировать понятиями, связанными с делимостью натуральных чисел;
- выражать числа в эквивалентных формах, выбирая наиболее подходящую в зависимости от конкретной ситуации;
- сравнивать и упорядочивать рациональные числа;
- выполнять вычисления с рациональными числами, сочетая устные и письменные приёмы вычислений, применение калькулятора;
- использовать понятия и умения, связанные с пропорциональностью величин, процентами, в ходе решения математических задач и задач из смежных предметов, выполнять несложные практические расчёты.
Выпускник получит возможность:
- познакомиться с позиционными системами счисления с основаниями, отличными от 10;
- углубить и развить представления о натуральных числах и свойствах делимости;
- научиться использовать приёмы, рационализирующие вычисления, приобрести привычку контролировать вычисления, выбирая подходящий для ситуации способ.
Действительные числа
Выпускник научится:
- использовать начальные представления о множестве действительных чисел;
- оперировать понятием квадратного корня, применять его в вычислениях.
Выпускник получит возможность:
- развить представление о числе и числовых системах от натуральных до действительных чисел; о роли вычислений в практике;
- развить и углубить знания о десятичной записи действительных чисел (периодические и непериодические дроби).
Измерения, приближения, оценки
Выпускник научится:
- использовать в ходе решения задач элементарные представления, связанные с приближёнными значениями величин.
Выпускник получит возможность:
- понять, что числовые данные, которые используются для характеристики объектов окружающего мира, являются преимущественно приближёнными, что по записи приближённых значений, содержащихся в информационных источниках, можно судить о погрешности приближения;
- понять, что погрешность результата вычислений должна быть соизмерима с погрешностью исходных данных.
Алгебраические выражения
Выпускник научится:
- оперировать понятиями «тождество», «тождественное преобразование», решать задачи, содержащие буквенные данные; работать с формулами;
- выполнять преобразования выражений, содержащих степени с целыми показателями и квадратные корни;
- выполнять тождественные преобразования рациональных выражений на основе правил действий над многочленами и алгебраическими дробями;
- выполнять разложение многочленов на множители.
Выпускник получит возможность научиться:
- выполнять многошаговые преобразования рациональных выражений, применяя широкий набор способов и приёмов;
- применять тождественные преобразования для решения задач из различных разделов курса (например, для нахождения наибольшего/наименьшего значения выражения).
Уравнения
Выпускник научится:
- решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными;
- понимать уравнение как важнейшую математическую модель для описания и изучения разнообразных реальных ситуаций, решать текстовые задачи алгебраическим методом;
- применять графические представления для исследования уравнений, исследования и решения систем уравнений с двумя переменными.
Выпускник получит возможность:
- овладеть специальными приёмами решения уравнений и систем уравнений; уверенно применять аппарат уравнений для решения разнообразных задач из математики, смежных предметов, практики;
- применять графические представления для исследования уравнений, систем уравнений, содержащих буквенные коэффициенты.
Неравенства
Выпускник научится:
- понимать и применять терминологию и символику, связанные с отношением неравенства, свойства числовых неравенств;
- решать линейные неравенства с одной переменной и их системы; решать квадратные неравенства с опорой на графические представления;
- применять аппарат неравенств для решения задач из различных разделов курса.
Выпускник получит возможность научиться:
- разнообразным приёмам доказательства неравенств; уверенно применять аппарат неравенств для решения разнообразных математических задач и задач из смежных предметов, практики;
- применять графические представления для исследования неравенств, систем неравенств, содержащих буквенные коэффициенты.
Основные понятия. Числовые функции
Выпускник научится:
- понимать и использовать функциональные понятия и язык (термины, символические обозначения);
- строить графики элементарных функций; исследовать свойства числовых функций на основе изучения поведения их графиков;
- понимать функцию как важнейшую математическую модель для описания процессов и явлений окружающего мира, применять функциональный язык для описания и исследования зависимостей между физическими величинами.
Выпускник получит возможность научиться:
- проводить исследования, связанные с изучением свойств функций, в том числе с использованием компьютера; на основе графиков изученных функций строить более сложные графики (кусочно-заданные, с «выколотыми» точками и т. п.);
- использовать функциональные представления и свойства функций для решения математических задач из различных разделов курса.
Числовые последовательности
Выпускник научится:
- понимать и использовать язык последовательностей (термины, символические обозначения);
- применять формулы, связанные с арифметической и геометрической прогрессией, и аппарат, сформированный при изучении других разделов курса, к решению задач, в том числе с контекстом из реальной жизни.
Выпускник получит возможность научиться:
- решать комбинированные задачи с применением формул n-го члена и суммы первых n членов арифметической и геометрической прогрессии, применяя при этом аппарат уравнений и неравенств;
- понимать арифметическую и геометрическую прогрессию как функции натурального аргумента; связывать арифметическую прогрессию с линейным ростом, геометрическую — с экспоненциальным ростом.
Описательная статистика
Выпускник научится использовать простейшие способы представления и анализа статистических данных.
Выпускник получит возможность приобрести первоначальный опыт организации сбора данных при проведении опроса общественного мнения, осуществлять их анализ, представлять результаты опроса в виде таблицы, диаграммы.
Случайные события и вероятность
Выпускник научится находить относительную частоту и вероятность случайного события.
Выпускник получит возможность приобрести опыт проведения случайных экспериментов, в том числе с помощью компьютерного моделирования, интерпретации их результатов.
Комбинаторика
Выпускник научится решать комбинаторные задачи на нахождение числа объектов или комбинаций.
Выпускник получит возможность научиться некоторым специальным приёмам решения комбинаторных задач.
Наглядная геометрия
Выпускник научится:
- распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
- распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
- строить развёртки куба и прямоугольного параллелепипеда;
- определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
- вычислять объём прямоугольного параллелепипеда.
Выпускник получит возможность:
- научиться вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
- углубить и развить представления о пространственных геометрических фигурах;
- научиться применять понятие развёртки для выполнения практических расчётов.
Геометрические фигуры
Выпускник научится:
- пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
- распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
- находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0° до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
- оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
- решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
- решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
- решать простейшие планиметрические задачи в пространстве.
Выпускник получит возможность:
- овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
- приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
- овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
- научиться решать задачи на построение методом геометрического места точек и методом подобия;
- приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
- приобрести опыт выполнения проектов по темам «Геометрические преобразования на плоскости», «Построение отрезков по формуле».
Измерение геометрических величин
Выпускник научится:
- использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
- вычислять площади треугольников, прямоугольников, параллелограмм- мов, трапеций, кругов и секторов;
- вычислять длину окружности, длину дуги окружности;
- вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
- решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
- решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Выпускник получит возможность научиться:
- вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
- вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
- применять алгебраический и тригонометрический аппарат и идеи движения при решении задач на вычисление площадей многоугольников.
Координаты
Выпускник научится:
- вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
- использовать координатный метод для изучения свойств прямых и окружностей.
Выпускник получит возможность:
- овладеть координатным методом решения задач на вычисления и доказательства;
- приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
- приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисления и доказательства».
Векторы
Выпускник научится:
- оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
- находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
- вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.
Выпускник получит возможность:
- овладеть векторным методом для решения задач на вычисления и доказательства;
- приобрести опыт выполнения проектов на тему «применение векторного метода при решении задач на вычисления и доказательства».
По теме: методические разработки, презентации и конспекты
Рабочая программа ФГОС по литературе ФГОС для 5 класса
Рабочая программа ФГОС по литературе для 5 класса рассчитана на 210 часов ( 6 часов в неделю), соответствует новым образовательным стандартам и может быть полезна учителю-предметнику...
Рабочая программа ФГОС по литературе ФГОС для 5 класса
Рабочая программа ФГОС по литературе для 5 класса рассчитана на 210 часов ( 6 часов в неделю), соответствует новым образовательным стандартам и может быть полезна учителю-предметнику...
Рабочая программа (ФГОС) по биологии для 5 и 6 классов по программе И.Н. Пономаревой.
Рабочие программы ФГОС по биологии для 5 и 6 классов, составленные на основе авторской программы проф. Пономаревой И.Н....
Рабочая программа (ФГОС) по географии для 5 и 6 классов по программе О.А. Климановой.
Рабочие программы ФГОС по географии для 5 и 6 классов, составленные на основе авторской программы Климановой О.А....
Рабочая программа ФГОС с УУД по рускому языку 6 класс по программе М.Т .Баранова, Т.А.Ладыженской, Н.М.Шанского
Рабочая программа по русскому языку для 6 класса составлена на основе Федерального компонента государственного стандарта основного общего образования, программы основного общего образования по р...
Рабочая программа ФГОС по технологии для 6 класса составлена на основе примерной программы основного общего образования по технологии автора И.А.Сасовой. Программа рассчитана на 68 часов.
Цели программы:-формирование представлений о технологической культуре производства;- овладение специальными умениями, необходимыми для проектирования и создания продуктов труда, ведения до...
РАБОЧАЯ ПРОГРАММА ПО ГЕОГРАФИИ 5 КЛАСС (КОНСТРУКТОР РАБОЧИХ ПРОГРАММ ФГОС 2022)
РАБОЧАЯ ПРОГРАММА ПО ГЕОГРАФИИ 5 КЛАСС (КОНСТРУКТОР РАБОЧИХ ПРОГРАММ ФГОС 2022)...