Рабочая программа по предмету «Математика»5-6 класс. Авторы: С.М. Никольский, М.К. Потапов, Н.Н. Решетников и др.
рабочая программа по математике (5, 6 класс)

Афонасьева Татьяна Ивановна

Рабочая программа по математике 5-6 классы и аннотация к ней

Скачать:

ВложениеРазмер
Файл annotatsiya_k_rp_5-6_klass_nikolskiy.docx34.55 КБ
Файл programma_5-6_kl_nikolskiy.docx38.66 КБ

Предварительный просмотр:

Аннотация к рабочей программе по предмету «Математика» 5 -6 классы

  1. Рабочая программа по предмету «Математика»5-6 класс.

 Авторы: С.М. Никольский, М.К. Потапов, Н.Н. Решетников и др.

Учебники ориентированы на формирование вычислительных навыков и развитие мышления учащихся. Основной упор делается на арифметические способы решения.

В состав УМК входят:

  • рабочие программы
  • учебники:
  • С.М. Никольский, М.К. Потапов, Н.Н. Решетников и др. Математика. 5 класс
  • С.М. Никольский, М.К. Потапов, Н.Н. Решетников и др. Математика. 6 класс
  • электронное приложение к учебнику
  • сборник рабочих программ
  • рабочая тетрадь
  • дидактические материалы
  • тематические тесты
  • задачи на смекалку
  • методические рекомендации (рекомендации размещены на сайте издательства)

Место дисциплины в структуре основной образовательной программы

        Математическое образование играет важную роль, как в практической, так и в духовной жизни общества.

        Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность.

        Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

        Без базовой математической подготовки невозможно стать образованным современным человеком.

        В школе математика служит опорным предметом для изучения смежных дисциплин.

        В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической.

         И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.).

        Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

  1. Программа составлена на основе:

-Федерального государственного образовательного стандарта основного общего образования, 2010 г.;  

- Примерной основной образовательной программы основного общего образования, 2015 г.;

- Учебного плана ГБОУ СОШ № 1393 «Школа РОСТ»;

- Федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования

4. В соответствии с учебным планом школы на 2017-2018 уч. год 

Согласно федеральному базисному учебному плану на изучение математики

в 5 классе 204 ч. из расчета 6 ч в неделю;

в 6 классе 204 ч. из расчета 6 ч в неделю;

 5. Программа

-рассмотрена на заседание методического объединения учителей математики, физики и информатики

-утверждена директором ГБОУ Школы № 1393«Школа РОСТ» И.Н.Субботиной

6.Основные цели программы:

●   формирование представлений о математике как универсальном языке;

  • развитие логического мышления, пространственного воображения, алгоритмической культуры;
  • овладение математическими знаниями и умениями, необходимыми в повседневной жизни и для изучения школьных естественных дисциплин на базовом уровне;
  • воспитание средствами математики культуры личности;
  • понимание значимости математики для научно-технического прогресса;                            
  • отношение к математике как к части общечеловеческой культуры через знакомство с историей её развития;
  • обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений.

  1. Программа составлена на основе:
  • федерального компонента государственного стандарта общего образования,
  • примерной программы по математике основного общего образования,
  • федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях
  • с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования,
  • авторского тематического планирования учебного материала

8.Используемые технологии

  • Активные и интерактивные методы обучения;
  • Технология развития критического мышления через чтение и письмо;
  • Метод проектов;
  • Технология уровневой дифференциации;
  • Информационно-коммуникационные технологии;
  • Игровые технологии;
  • Исследовательская технология обучения;
  • Здоровьесберегающие технологии и др.

9.Требования к результатам освоения дисциплины

Выпускник научится в 5-6 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

  • Оперировать на базовом уровне[1] понятиями: множество, элемент множества, подмножество, принадлежность;
  • задавать множества перечислением их элементов;
  • находить пересечение, объединение, подмножество в простейших ситуациях.

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания.

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;
  • использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений;
  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;
  • выполнять округление рациональных чисел в соответствии с правилами;
  • сравнивать рациональные числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;
  • выполнять сравнение чисел в реальных ситуациях;
  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Статистика и теория вероятностей

  • Представлять данные в виде таблиц, диаграмм,
  • читать информацию, представленную в виде таблицы, диаграммы.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;
  • строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;
  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
  • составлять план решения задачи;
  • выделять этапы решения задачи;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
  • решать задачи на нахождение части числа и числа по его части;
  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
  • находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины;
  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)

Наглядная геометрия

Геометрические фигуры

  • Оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырехугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.

В повседневной жизни и при изучении других предметов:

  • решать практические задачи с применением простейших свойств фигур.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
  • вычислять площади прямоугольников.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;
  • выполнять простейшие построения и измерения на местности, необходимые в реальной жизни.

История математики

  • описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей.

10.Формы контроля

Система контрольных работ:

-контрольная работа

- проверочная

-Тест  

-Зачет

-Диктант

-Взаимоконтроль

-Самоконтроль




Предварительный просмотр:

Рабочая программа по предмету «Математика»5-6 класс.

УМК: С.М. Никольский, М.К. Потапов, Н.Н. Решетников и др.

Планируемые результаты освоения учебного предмета

Изучение математики в основной школе направлено на достижение следующих целей:

Личностные результаты должны отражать: 

1)развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

2)формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

-воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

3)формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

4)развитие интереса к математическому творчеству и математических способностей.

Метапредметные результаты должны отражать:

1) умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;

2) умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

3) умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;

4) умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения;

5) владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;

6) умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;

7) умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;

9) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение;

Предметные результаты должны отражать:

1) формирование представлений о математике как о методе познания действительности, позволяющем описывать и изучать реальные процессы и явления;

2) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования, доказательства математических утверждений;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений;

4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умения моделировать реальные ситуации на языке алгебры, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат;

5) овладение системой функциональных понятий, развитие умения использовать функционально-графические представления для решения различных математических задач, для описания и анализа реальных зависимостей;

8) овладение простейшими способами представления и анализа статистических данных; формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о простейших вероятностных моделях; развитие умений извлекать информацию, представленную в таблицах, на диаграммах, графиках, описывать и анализировать массивы числовых данных с помощью подходящих статистических характеристик, использовать понимание вероятностных свойств окружающих явлений при принятии решений;

9) развитие умений применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, компьютера, пользоваться оценкой и прикидкой при практических расчетах;

Математическое образование в школе строится с учетом принципов непрерывности (изучение математики на протяжении всех лет обучения в школе), преемственности (учет положительного опыта, накопленного в отечественном и за рубежном математическом образовании), вариативности (возможность реализации одного и того же содержания на базе  различных научно-методических подходов),  дифференциации (возможность для учащихся получать математическую подготовку разного уровня в соответствии с их индивидуальными особенностями).

Планируется использование таких педагогических технологий в преподавании предмета, как дифференцированное обучение, КСО, проблемное обучение, ЛОО, технология развивающего обучения, тестирование, технология критического мышления, ИКТ. Использование этих технологий позволит более точно реализовать потребности учащихся в математическом образовании и поможет подготовить учащихся к государственной итоговой аттестации.

Содержание учебного предмета, курса.

Содержание курса математики в 5–6 классах

Натуральные числа и нуль

Натуральный ряд чисел и его свойства

Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.

Запись и чтение натуральных чисел

Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.

Округление натуральных чисел

Необходимость округления. Правило округления натуральных чисел.

Сравнение натуральных чисел, сравнение с числом 0

Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулем, математическая запись сравнений, способы сравнения чисел.

Действия с натуральными числами

Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.

Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.

Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических  действий.

Степень с натуральным показателем

Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.

Числовые выражения

Числовое выражение и его значение, порядок выполнения действий.

Деление с остатком

Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.

Свойства и признаки делимости

Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.

Разложение числа на простые множители

Простые и составные числа, решето Эратосфена.

Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.

Алгебраические выражения

Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.

Делители и кратные

Делитель и его свойства, общий делитель двух и более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.

Дроби

Обыкновенные дроби

Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).

Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот.

Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.

Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.

Арифметические действия со смешанными дробями.

Арифметические действия с дробными числами.        

Способы рационализации вычислений и их применение при выполнении действий.

Десятичные дроби

Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.

Отношение двух чисел

Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.

Среднее арифметическое чисел

Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.

Проценты

Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.

Диаграммы

Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.

Рациональные числа

Положительные и отрицательные числа

Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.

Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.

Решение текстовых задач

Единицы измерений: длины, площади, объема, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

 Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, перебор вариантов.

Наглядная геометрия

Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Решение практических задач с применением простейших свойств фигур.

История математики

Появление цифр, букв, иероглифов в процессе счета и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией.

Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел.

Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена.  

Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему ?

Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер.  Л. Магницкий

Тематическое планирование

5 класс

№ п/п

Наименование разделов и тем

Всего часов

Формы контроля

1.

Вводное повторение

2

Диагностическая работа

2.

Натуральные числа и нуль

46

Контрольная работа №1 по теме: «Сложение и вычитание натуральных чисел»

Контрольная работа №2 по теме: «Умножение и деление натуральных чисел»

3.

Измерение величин

30

Контрольная работа  №3 по теме: «Прямая. Луч. Отрезок»

Контрольная работа  №4 по теме:

«Площадь прямоугольника. Объем прямоугольного параллелепипеда. Задачи на движение»

4.

Делимость натуральных чисел

19

Контрольная работа  №5 по теме: «Признаки делимости. НОК. НОД»

5.

Обыкновенные дроби

65

Контрольная работа №6 по теме: «Сложение и вычитание дробей»

Контрольная работа № 7 по теме: «Умножение и деление дробей»

Контрольная работа № 8 по теме:

«Действия со смешанными дробями»

6.

Повторение

8

Итоговая контрольная работа №9

Итого

170 ч

        6 класс

Название темы

Количество часов

(5 часов в неделю)

по примерной программе

1

Повторение.

4

2

Отношения ,пропорции, проценты

26

3

Целые числа

34

4

Рациональные числа

38

5

Десятичные дроби

34

6

Обыкновенные и десятичные дроби

24

7

Повторение

10

ИТОГО

170


По теме: методические разработки, презентации и конспекты

Рабочая программа учебного курса математики в 7 классе авторов Ю.Н.Макарычева, Н.Г. Миндюк и др

Пояснительная записка, содержание курса, тематическое планирование...

Рабочая программа по математике 5 класс к учебнику С.М. Никольский, М.К. Потапов, Н.Н. Решетников, А.В. Шевкин/Москва, Просвещение, 2016г.

1. Титульный лист.2.Личностные, метапредметные и предметные результаты освоения обучающимися учебного предмета «Математика 5» на     базовом и повышенном уровнях.3.Соде...