Рабочие программы по математике 2018-2019 уч. год
рабочая программа по математике (5, 8, 9, 10, 11 класс) на тему

Казиахмедова Разия Керимовна

Рабочие программы по математике 2018-2019 уч. год

Скачать:

ВложениеРазмер
Файл rabochie_programmy_po_matematike_za_2018-2019_uch._god.rar1.61 МБ

Предварительный просмотр:

Приложение

                                                                                                                                                                                                    к основной образовательной программе

основного общего образования (для 9 кл)

за 2018 – 2019 учебный год

приказ № 61/1  от 30.08.2018г.

Российская Федерация

Тюменская область

Ханты-Мансийский автономный округ – Югра

Нижневартовский район

муниципальное бюджетное общеобразовательное учреждение

«Ватинская общеобразовательная средняя школа»

Рабочая программа

по алгебре, 9 класс

2018-2019 учебный год

Предмет: алгебра

Уровень: общеобразовательный

Учитель: Казиахмедова Разия Керимовна

2018г.


ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Статус документа

        Настоящая программа по алгебре для основной общеобразовательной школы 9 класса составлена на основе федерального компонента государственного стандарта основного  общего образования (приказ МОиН РФ от 05.03.2004г. № 1089), примерных программ по математике  (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г. № 03-1263),  примерной программы для общеобразовательных школ, гимназий, лицеев по математике 5-9 классы к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н.,– М: «Просвещение», 2016. – с. 86-91)

        Примерная программа конкретизирует содержание предметных тем образовательного стандарта и даёт примерное распределение учебных часов по разделам курса.

Цели изучения:

  • овладение системой математических знаний и умений, необходимых для применения в практической деятельности, изучения смежных дисциплин, продолжения образования;
  • интеллектуальное развитие, формирование качеств личности, необходимых человеку для полноценной жизни в современном обществе: ясность и точность мысли, критичность мышления, интуиция, логическое мышление, элементы алгоритмической культуры, пространственных представлений, способность к преодолению трудностей;
  • формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов;
  • воспитание культуры личности, отношения к
  • развитие вычислительных и формально-оперативных математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса; алгебраических умений до уровня, позволяющего уверенно использовать их при решении задач математики и смежных предметов (физика, химия, основы информатики и вычислительной техники), усвоение аппарата уравнений и неравенств как основного средства математического моделирования прикладных задач, осуществление функциональной подготовки школьников. В ходе изучения курса, обучающиеся овладевают приёмами вычислений на калькуляторе.

Общая характеристика учебного предмета

        Математическое образование в основной школе складывается из следующих содержательных компонентов (точные названия блоков): арифметика; алгебра; геометрия; элементы комбинаторики, теории вероятностей, статистики и логики. В своей совокупности они отражают богатый опыт обучения математике в нашей стране, учитывают современные тенденции отечественной и зарубежной школы и позволяют реализовать поставленные перед школьным образованием цели на информационно емком и практически значимом материале. Эти содержательные компоненты, развиваясь на протяжении всех лет обучения, естественным образом переплетаются и взаимодействуют в учебных курсах.

        Арифметика призвана способствовать приобретению практических навыков, необходимых для повседневной жизни. Она служит базой для всего дальнейшего изучения математики, способствует логическому развитию и формированию умения пользоваться алгоритмами.

        Алгебра Изучение алгебры нацелено на формирование математического аппарата для решения задач из математики, смежных предметов, окружающей реальности. Язык алгебры подчеркивает значение математики как языка для построения математических моделей, процессов и явлений реального мира (одной из основных задач изучения алгебры является развитие алгоритмического мышления, необходимого, в частности, для освоения курса информатики; овладение навыками дедуктивных рассуждений. Преобразование символических форм вносит свой специфический вклад в развитие воображения, способностей к математическому творчеству. Другой важной задачей изучения алгебры является получение школьниками конкретных знаний о функциях как важнейшей математической модели для описания и исследования разнообразных процессов (равномерных, равноускоренных, экспоненциальных, периодических и др.), для формирования у обучающихся представлений о роли математики в развитии цивилизации и культуры.

        Геометрия — один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания обучающихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

        Элементы логики, комбинаторики, статистики и теории вероятностей становятся обязательным компонентом школьного образования, усиливающим его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования функциональной грамотности – умений воспринимать и анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся осуществлять рассмотрение случаев, перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

        При изучении статистики и теории вероятностей обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации и закладываются основы вероятностного мышления.

        Таким образом, в ходе освоения содержания курса, учащиеся получают возможность:

        развить представление о числе и роли вычислений в человеческой практике; сформировать практические навыки выполнения устных, письменных, инструментальных вычислений, развить вычислительную культуру;

        овладеть символическим языком алгебры, выработать формально-оперативные алгебраические умения и научиться применять их к решению математических и нематематических задач;

        изучить свойства и графики элементарных функций, научиться использовать функционально-графические представления для описания и анализа реальных зависимостей;

        развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими пространственными телами и их свойствами;

        получить представления о статистических закономерностях в реальном мире и о различных способах их изучения, об особенностях выводов и прогнозов, носящих вероятностный характер;

        развить логическое мышление и речь – умения логически обосновывать суждения, проводить несложные систематизации, приводить примеры и контрпримеры, использовать различные языки математики (словесный, символический, графический) для иллюстрации, интерпретации, аргументации и доказательства;

        сформировать представления об изучаемых понятиях и методах как важнейших средствах математического моделирования реальных процессов и явлений.

        В курсе алгебры 9 класса  расширяются сведения о свойствах функций, познакомить обучающихся со свойствами и графиком квадратичной функции; систематизируются и обобщаются сведения о решении целых и дробных рациональных уравнений с одной переменной, формируется умение решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а0; вырабатывается умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; даются понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида; знакомятся обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; вводятся понятия относительной частоты и вероятности случайного события.

Место предмета в учебном плане МОУ «Ватинская ОСШ»

Согласно Федерального базисного учебного плана на изучение математики в 9 классе отводится не менее 170 часов из расчета 5 ч в неделю, при этом разделение часов на изучение алгебры и геометрии следующее:

3 часа в неделю алгебры, итого 105 часа; 2 часа в неделю геометрии, итого 70 часов.

Количество учебных часов:

В год -105 часа (3 часа в неделю, всего 105 часа)

В том числе:

Контрольных работ – 9 (включая итоговую контрольную работу)

Резервное время – 3 ч.

Формы промежуточной и итоговой аттестации: Промежуточная аттестация проводится в форме тестов, контрольных, самостоятельных  

             работ. Итоговая аттестация предусмотрена в виде административной контрольной работы.

Уровень обучения базовый.

Срок реализации рабочей учебной программы – один учебный год.

В данном классе ведущими методами обучения предмету являются: объяснительно-иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно ориентированное обучение, обучение с применением опорных схем, ИКТ.

Учебно-методический комплекс учителя:

Алгебра-9: учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2009 – 2012 год.

Уроки алгебры в 9 классе: кн. для учителя / В.И. Жохов, Л.Б. Крайнева. — М.: Просвещение, 2010— 2012.

Алгебра: дидакт. материалы для 9 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2011—2013.

Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2009 -2011г.        

Учебно-методический комплекс ученика:

Алгебра-9: учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2009 – 2012 год.

Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2009 -2011г.

ОСНОВНОЕ СОДЕРЖАНИЕ

Глава 1. Свойства функций. Квадратичная функция (25 часа)

Функция. Свойства функций. Квадратный трехчлен. Разложение квадратного трехчлена на множители. Функция у = ах2 + bх + с, её свойства и график. Неравенства второй степени с одной переменной. Метод интервалов.

Цель: расширить сведения о свойствах функций, ознакомить обучающихся со свойствами и графиком квадратичной функции, сформировать умение решать неравенства вида ах2 + bх + с>0 ах2 + bх + с<0, где а0.

В начале темы систематизируются сведения о функциях. Повторяются основные понятия: функция, аргумент, область определения функции, график. Даются понятия о возрастании и убывании функции, промежутках знакопостоянства. Тем самым создается база для усвоения свойств квадратичной и степенной функций, а также для дальнейшего углубления функциональных представлений при изучении курса алгебры и начал анализа.

Подготовительным шагом к изучению свойств квадратичной функции является также рассмотрение вопроса о квадратном трехчлене и его корнях, выделении квадрата двучлена из квадратного трехчлена, разложении квадратного трехчлена на множители.

Изучение квадратичной функции начинается с рассмотрения функции у=ах2, её свойств и особенностей графика, а также других частных видов квадратичной функции – функции у=ах2+n, у=а(х-m)2. Эти сведения используются при изучении свойств квадратичной функции общего вида. Важно, чтобы обучающиеся поняли, что график функции у = ах2 + bх + с может быть получен из графика функции у = ах2 с помощью двух параллельных переносов. Приёмы построения графика функции у = ах2 + bх + с отрабатываются на конкретных примерах. При этом особое внимание следует уделить формированию у обучающихся умения указывать координаты вершины параболы, ее ось симметрии, направление ветвей параболы.

При изучении этой темы дальнейшее развитие получает умение находить по графику промежутки возрастания и убывания функции, а также промежутки, в которых функция сохраняет знак.

Формирование умений решать неравенства вида ах2 + bх + с>0 ах2 + bх + с <0, где а0, осуществляется с опорой на сведения о графике квадратичной функции (направление ветвей параболы ее расположение относительно оси Ох).

Обучающиеся знакомятся с методом интервалов, с помощью которого решаются несложные рациональные неравенства.

Обучающиеся знакомятся со свойствами степенной функции у=хn при четном и нечетном натуральном показателе n. Вводится понятие корня n-й степени. Обучающиеся должны понимать смысл записей вида, . Они получают представление о нахождении значений корня с помощью калькулятора, причем выработка соответствующих умений не требуется.

Глава 2. Уравнения и неравенства с одной переменной (31 часов)

Целые уравнения. Уравнение с двумя переменными и его график. Системы уравнений второй степени. Решение задач с помощью систем уравнений второй степени.

Цель: систематизировать и обобщить сведения о решении целых уравнений с одной переменной, выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем; выработать умение решать простейшие системы, содержащие уравнение второй степени с двумя переменными, и текстовые задачи с помощью составления таких систем.

В этой теме завершается изучение рациональных уравнений с одной переменной. В связи с этим проводится некоторое обобщение и углубление сведений об уравнениях. Вводятся понятия целого рационального уравнения и его степени. Обучающиеся знакомятся с решением уравнений третьей степени и четвертой степени с помощью разложения на множители и введения вспомогательной переменной. Метод решения уравнений путем введения вспомогательных переменных будет широко использоваться дальнейшем при решении тригонометрических, логарифмических и других видов уравнений.

В данной теме завершаемся изучение систем уравнений с двумя. переменными. Основное внимание уделяется системам, в которых одно из уравнений первой степени, а другое второй. Известный обучающимся способ подстановки находит здесь дальнейшее применение и позволяет сводить решение таких систем к решению квадратного уравнения.

Ознакомление обучающихся с примерами систем уравнений с двумя переменными, в которых оба уравнения второй степени, должно осуществляться с достаточной осторожностью и ограничиваться простейшими примерами.

Привлечение известных обучающимся графиков позволяет привести примеры графического решения систем уравнений. С помощью графических представлений можно наглядно показать обучающимся, что системы двух уравнений с двумя переменными второй степени могут иметь одно, два, три, четыре решения или не иметь решений.

Разработанный математический аппарат позволяет существенно расширить класс содержательных текстовых задач, решаемых с помощью систем уравнений.

Глава 3. Прогрессии (16 часов)

Арифметическая и геометрическая прогрессии. Формулы n-го члена и суммы первых n членов прогрессии. Бесконечно убывающая геометрическая прогрессия.

Цель: дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

При изучении темы вводится понятие последовательности, разъясняется смысл термина «n-й член последовательности», вырабатывается умение использовать индексное обозначение. Эти сведения носят вспомогательный характер и используются для изучения арифметической и геометрической прогрессий.

Работа с формулами n-го члена и суммы первых n членов прогрессий, помимо своего основного назначения, позволяет неоднократно возвращаться к вычислениям, тождественным преобразованиям, решению уравнений, неравенств, систем.

Рассматриваются характеристические свойства арифметической и геометрической прогрессий, что позволяет расширить круг предлагаемых задач.

Глава 4. Элементы комбинаторики и теории вероятностей (10 часов)

Комбинаторное правило умножения. Перестановки, размещения, сочетания. Относительная частота и вероятность случайного события.

Цель: ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

Изучение темы начинается с решения задач, в которых требуется составить те или иные комбинации элементов и. подсчитать их число. Разъясняется комбинаторное правило умножения, которое исполнятся в дальнейшем при выводе формул для подсчёта числа перестановок, размещений и сочетаний. При изучении данного материала необходимо обратить внимание обучающихся на различие понятий «размещение» и «сочетание», сформировать у них умение определять, о каком виде комбинаций идет речь в задаче.

В данной теме обучающиеся знакомятся с начальными сведениями из теории вероятностей. Вводятся понятия «случайное событие», «относительная частота», «вероятность случайного события». Рассматриваются статистический и классический подходы к определению вероятности случайного события. Важно обратить внимание обучающихся на то, что классическое определение вероятности можно применять только к таким моделям реальных событий, в которых все исходы являются равновозможными.

5. Повторение (22 часов)

Цель: Повторение, обобщение и систематизация знаний, умений и навыков за курс алгебры основной общеобразовательной школы.

Требования к уровню подготовки обучающихся в 9 классе

        В ходе преподавания геометрии в 9 классе, работы над формированием у обучающихся перечисленных в программе знаний и умений следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:

        планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;

        решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;

        исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;

        ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;

        проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;

        поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.

В результате изучения курса алгебры 9 класса обучающиеся должны:

знать/понимать

  • существо понятия математического доказательства; примеры доказательств;
  • существо понятия алгоритма; примеры алгоритмов;
  • как используются математические формулы, уравнения и неравенства; примеры их применения для решения математических и практических задач;
  • как математически определенные функции могут описывать реальные зависимости; приводить примеры такого описания;
  • как потребности практики привели математическую науку к необходимости расширения понятия числа;
  • вероятностный характер многих закономерностей окружающего мира; примеры статистических закономерностей и выводов;
  • каким образом геометрия возникла из практических задач землемерия; примеры геометрических объектов и утверждений о них, важных для практики;
  • смысл идеализации, позволяющей решать задачи реальной действительности математическими методами, примеры ошибок, возникающих при идеализации;

АРИФМЕТИКА

уметь

  • выполнять устно арифметические действия: сложение и вычитание двузначных чисел и десятичных дробей с двумя знаками, умножение однозначных чисел, арифметические операции с обыкновенными дробями с однозначным знаменателем и числителем;
  • переходить от одной формы записи чисел к другой, представлять десятичную дробь в виде обыкновенной и в простейших случаях обыкновенную в виде десятичной, проценты — в виде дроби и дробь — в виде процентов; записывать большие и малые числа с использованием целых степеней десятки;
  • выполнять арифметические действия с рациональными числами, сравнивать рациональные и действительные числа; находить в несложных случаях значения степеней с целыми показателями и корней; находить значения числовых выражений;
  • округлять целые числа и десятичные дроби, находить приближения чисел с недостатком и с избытком, выполнять оценку числовых выражений;
  • пользоваться основными единицами длины, массы, времени, скорости, площади, объема; выражать более крупные единицы через более мелкие и наоборот;
  • решать текстовые задачи, включая задачи, связанные с отношением и с пропорциональностью величин, дробями и процентами;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • решения несложных практических расчетных задач, в том числе c использованием при необходимости справочных материалов, калькулятора, компьютера;
  • устной прикидки и оценки результата вычислений; проверки результата вычисления с использованием различных приемов;
  • интерпретации результатов решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений;

АЛГЕБРА

уметь

  • составлять буквенные выражения и формулы по условиям задач; осуществлять в выражениях и формулах числовые подстановки и выполнять соответствующие вычисления, осуществлять подстановку одного выражения в другое; выражать из формул одну переменную через остальные;
  • выполнять основные действия со степенями с целыми показателями, с многочленами и с алгебраическими дробями; выполнять разложение многочленов на множители; выполнять тождественные преобразования рациональных выражений;
  • применять свойства арифметических квадратных корней для вычисления значений и преобразований числовых выражений, содержащих квадратные корни;
  • решать линейные, квадратные уравнения и рациональные уравнения, сводящиеся к ним, системы двух линейных уравнений и несложные нелинейные системы;
  • решать линейные и квадратные неравенства с одной переменной и их системы;
  • решать текстовые задачи алгебраическим методом, интерпретировать полученный результат, проводить отбор решений, исходя из формулировки задачи;
  • изображать числа точками на координатной прямой;
  • определять координаты точки плоскости, строить точки с заданными координатами; изображать множество решений линейного неравенства;
  • распознавать арифметические и геометрические прогрессии; решать задачи с применением формулы общего члена и суммы нескольких первых членов;
  • находить значения функции, заданной формулой, таблицей, графиком по ее аргументу; находить значение аргумента по значению функции, заданной графиком или таблицей;
  • определять свойства функции по ее графику; применять графические представления при решении уравнений, систем, неравенств;
  • описывать свойства изученных функций (у=кх, где к0, у=кх+b, у=х2, у=х3, у =, у=, у=ах2+bх+с, у= ах2+n  у= а(х - m) 2 ), строить их графики;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выполнения расчетов по формулам, составления формул, выражающих зависимости между реальными величинами; нахождения нужной формулы в справочных материалах;
  • моделирования практических ситуаций и исследований построенных моделей с использованием аппарата алгебры;
  • описания зависимостей между физическими величинами соответствующими формулами при исследовании несложных практических ситуаций;
  • интерпретации графиков реальных зависимостей между величинами;

ЭЛЕМЕНТЫ ЛОГИКИ, КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ

уметь

  • проводить несложные доказательства, получать простейшие следствия из известных или ранее полученных утверждений, оценивать логическую правильность рассуждений, использовать примеры для иллюстрации и контрпримеры для опровержения утверждений;
  • извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики;
  • решать комбинаторные задачи путем систематического перебора возможных вариантов, а также с использованием правила умножения;
  • вычислять средние значения результатов измерений;
  • находить частоту события, используя собственные наблюдения и готовые статистические данные;
  • находить вероятности случайных событий в простейших случаях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • выстраивания аргументации при доказательстве (в форме монолога и диалога);
  • распознавания логически некорректных рассуждений;
  • записи математических утверждений, доказательств;
  • анализа реальных числовых данных, представленных в виде диаграмм, графиков, таблиц;
  • решения практических задач в повседневной и профессиональной деятельности с использованием действий с числами, процентов, длин, площадей, объемов, времени, скорости;
  • решения учебных и практических задач, требующих систематического перебора вариантов;
  • сравнения шансов наступления случайных событий, оценки вероятности случайного события в практических ситуациях, сопоставления модели с реальной ситуацией;
  • понимания статистических утверждений.

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ, алгебра 9 класс

3 часа в неделю. Всего 105 часов.

№ п\п

Тема

Количество часов

Дата по плану

Дата по факту

Квадратичная функция (25 ч.).

  Цель: выработать умение строить график квадратичной функции и применять графические представления для решения неравенств второй степени с одной переменной.

Развивать: умение оформлять записи математических выражений; вычислительные навыки; грамотную математическую речь.

Воспитывать: самодисциплину, самоконтроль, аккуратность, умение выслушать собеседника, терпение, повышенную работоспособность

Функции и их свойства

1

01,09

Функции и их свойства

1

03,09

Функции и их свойства

1

04,09

Функции и их свойства

1

05,09

Квадратный трехчлен и его корни.

1

10,09

Квадратный трехчлен и его корни.

1

11,09

Входная контрольная работа №1

1

12,09

Анализ ошибок к р.

1

17,09

Квадратный трехчлен и его корни.

1

18,09

1

19,09

Разложение квадратного трехчлена на множители.

1

22,09

1

24,09

1

25,09

Функция y=ax2 и её свойства

1

26,09

1

01,10

  1.  

Графики функций y=a(x-m)2, y=ax2+n, y=a(x-m)2+n.

1

02,10

1

03,10

1

08,10

Построение графика квадратичной функции.

1

09,10

1

10,10

1

15,10

Степенная функция. Корень n-ой степени.

1

16,10

1

17,10

1

22,10

Контрольная работа №2 «Квадратичная функция и ее график»

1

23,10

Уравнения и системы уравнений (31 ч.).

  Цель: выработать умение решать простейшие системы, содержащие уравнения второй степени с двумя переменными, и решать текстовые задачи с помощью     составления таких систем.

Анализ ошибок. Целое уравнение и его корни.

1

24,10

Целое уравнение и его корни.

1

06,11

  1.  

Уравнения, приводимые к квадратным уравнениям

1

07,11

1

10,11

1

12,11

Дробные рациональные уравнения

1

13,11

Дробные рациональные уравнения

1

14,11

Дробные рациональные уравнения

1

17,11

Решение неравенств  второй степени с одной переменной

1

19,11

1

20,11

Метод интервалов.

1

21,11

Метод интервалов.

1

26,11

Метод интервалов.

1

27,11

Контрольная работа  №3  «Решение неравенств второй

степени с одной переменной»

1

28,11

Анализ ошибок. Уравнение с двумя переменными и его график

1

03,12

Графический способ решения систем уравнений.

1

04,12

1

05,12

Решение систем уравнений второй степени.

1

10,12

1

11,12

Решение систем уравнений второй степени

1

12,12

1

17,12

Контрольная работа за 1 полугодие №4

1

18,12

Анализ ошибок контрольной работы

1

19,12

Решение задач с помощью систем уравнений второй степени.

1

24,12

1

25,12

Решение задач с помощью систем уравнений второй степени.

1

26,12

Неравенства с двумя переменными

1

09,01

Неравенства с двумя переменными

1

14,01

Системы неравенств с двумя переменными

1

15,01

Системы неравенств с двумя переменными

1

16,01

 Контрольная работа №5: «Уравнения и системы уравнений»

1

21,01

Прогрессии (16 ч.).

    Цель: дать понятия об арифметической и геометрической прогрессиях как числовых последовательностях особого вида.

    Развивать: умение самостоятельно работать по алгоритму; анализировать, делать выводы, обобщать.

Воспитывать: самодисциплину, самоконтроль, аккуратность, умение выслушать собеседника, терпение, повышенную работоспособность.

Анализ ошибок. Последовательности.

1

22,01

Определение арифметической прогрессии.

1

23,01

Формула n-го члена арифметической прогрессии.

1

28,01

1

29,01

Формула суммы n первых членов арифметической прогрессии.

1

30,01

1

04,02

1

05,02

 Контрольная работа  №6:«Арифметическая прогрессия»

1

06,02

Анализ ошибок. Определение геометрической прогрессии. Формула n-го члена геометрической прогрессии.

1

11,02

1

12,02

1

13,02

Формула суммы n первых членов геометрической прогрессии.

1

18,02

1

19,02

1

20,02

1

25,02

 Контрольная работа  №:7  «Геометрическая прогрессия»

1

26,02

Элементы комбинаторики и теории вероятностей (10 часов)

   Цель: ознакомить обучающихся с понятиями перестановки, размещения, сочетания и соответствующими формулами для подсчета их числа; ввести понятия относительной частоты и вероятности случайного события.

   Развивать: умение формулировать и обосновывать свои суждения; умение анализировать, обобщать и делать выводы.

   Воспитывать: самодисциплину, самоконтроль, аккуратность, умение выслушать собеседника, терпение, повышенную работоспособность.

Примеры комбинаторных задач.

1

27,02

Примеры комбинаторных задач.

1

04,03

Перестановки,

1

05,03

Перестановки,

1

06,03

Размещения.  Сочетания

1

11,03

Размещения.  Сочетания

1

12,03

Размещения.  Сочетания

1

13,03

Начальные сведения из теории вероятностей

1

18,03

Относительная частота случайного события.

1

19,03

Вероятность равновозможных событий

1

20,03

Решение задач. Самостоятельная работа

1

01,04

Повторение (22 ч)

Цель: обобщение и систематизация знаний за курс 9 класса.

Развивать: умение формулировать и обосновывать свои суждения; умение анализировать, обобщать и делать выводы.

Воспитывать: самодисциплину, самоконтроль, аккуратность, умение выслушать собеседника, терпение, повышенную    работоспособность.

Вычисления

1

02,04

Вычисления

1

03,04

Тождественные преобразования

1

08,04

Тождественные преобразования

1

09,04

Уравнения

1

10,04

Уравнения

1

15,04

Уравнения

1

16,04

Системы уравнений

1

17,04

 Системы уравнений

1

22,04

Решения неравенств

1

23,04

Решения неравенств

1

24,04

Решения систем неравенств

1

29,04

Построение графиков функций

1

30,04

Построение графиков функций

1

06,05

Построение графиков функций

1

07,05

Итоговое тестирование №8

1

08,05

Итоговое тестирование №8

1

13,05

Анализ ошибок контрольной работы

1

14,05

Решение вариантов ОГЭ

1

15,05

1

20,05

1

21,05

1

22,05

Описание учебно-методического и материально-технического обеспечения

  1. Федеральный компонент государственных образовательных стандартов основного общего образования (приказ Минобрнауки от 05.03.2004г. № 1089).
  2. Примерная программа по математике (письмо Департамента государственной политики в образовании Минобрнауки России от 07.07.2005г № 03-1263).
  3. Примерная программа для общеобразовательных школ, гимназий, лицеев по математике 5-11 классы к учебному комплексу для 7-9 классов (авторы Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова Ю.Н.), составители Г.М. Кузнецова, Н.Г. Миндюк– М: «Дрофа», 2013. – с. 86-91
  4. Алгебра-9: учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2016 год.
  5. Алгебра: дидакт. материалы для 9 кл. / Л. И. Звавич, Л. В. Кузнецова, С. Б» Суворова. — М.: Просвещение, 2012.
  6. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2012г.

Список литературы для учащегося:

  1. Алгебра-9: учебник/автор: Ю.Н. Макарычев, Н.Г. Миндюк, К.Н. Нешков, С.Б. Суворова, Просвещение, 2016 год.
  2. Элементы статистики и теории вероятностей: Учеб пособие для обучающихся 7-9 кл. общеобразоват. учреждений / Ю.Н. Макарычев, Н.Г. Миндюк; под ред. С.А. Теляковского. –– М.: Просвещение,2012г.

Дополнительная литература:

  1. Алгебра: сб. заданий для подготовки к итоговой аттестации в 9 кл. / Л.В. Кузнецова, С.В. Суворова, Е.А. Бунимович и др. – М.: Просвещение, 2013;
  2. ОГЭ Математика 9 класс. Экспериментальная экзаменационная работа. Типовые тестовые задания / Т.В. Колесникова, С.С. Минаева. – М.: Издательство «Экзамен», 2016;
  3. А.Г. Мордкович, П.В.Семенов События. Вероятности. Статистическая обработка данных. 7-9 классы. – М.: «Мнемозина»,2012;
  4. Сборник заданий для подготовки к итоговой аттестации в 9 классе/ Л.В.Кузнецова и др.– М.: Просвещение, 2011.
  5. Олимпиадные задания по математике. 9 класс / авт.-сост. С.П. Ковалёва. – Волгоград: Учитель,2011.
  6. Сайты «решу ЕГЭ» «Фипи» «ЕГЭ» и др.


По теме: методические разработки, презентации и конспекты

РАБОЧАЯ ПРОГРАММА 10 кл. 2018-2019 уч.год

Календарно-тематическое планировае 10 кл....

РАБОЧАЯ ПРОГРАММА 11в КЛАСС 2018-2019

РАБОЧАЯ ПРОГРАММА 11в КЛАСС 2018-2019...

Рабочая программа по математике 2018-2019 г.

Рабочая программа по математике 5,6,9 классы по УМК Мордкович А.Г., Атанасян Л.С....

Рабочие программы по математике 2018-2019 учебный год

Рабочие программы для учеников Пановской вечерней школы...

Рабочая программа 9 класс 2018-2019 г.

Рабочая программаосновного общего образования)по предмету физика для 9 класса(количество часов в неделю 2 часа,год-70 часов)Уровень базовый...

Рабочая программа 10 класс 2018-2019 (профиль)

Рабочая программасреднего общего образования)по предмету физика для 10-11класса(количество часов в неделю 5 часов,год-175 часов)Уровень профильный...