Рабочая программа по математике 5 класс автор Г.В.Дорофеев
рабочая программа по математике (5 класс) на тему

Подгорбунская Ирина Викторовна

Рабочая программа составлена в соответствии с ФГОС

Скачать:

ВложениеРазмер
Файл rabochaya_programma_5_klass.rar31.61 КБ

Предварительный просмотр:

                                  Муниципальное общеобразовательное учреждение:

средняя общеобразовательная школа №47

                                                                                       Утверждаю

                                                                                     Директор МОУ СОШ №47

                                                                                            ____________ Е.В.Фалилеева

                                                                                 «____» _______20___г.

                                         Рабочая программа по математике

                                                                      5 класс

                                                                                   Составитель: Подгорбунская И.В.

                                                                                                           учитель математики

        Обсуждена и согласована на                                            Принята на методическом совете

        методическом объединении                                            протокол №_____ от

         протокол №___ от                                                               «____» ________20___г.

         «____» ________ 20___г.

                                                                                   2017 год

Рабочая программа по предмету математика на 5 класс составлена на основе

  1. Закона «Об образовании Российской Федерации» от 29.12.12 № 273-ФЗ
  2. Федерального государственного образовательного стандарта от 17.12.10 №1897
  3. Примерной основной образовательной программы ООО (одобрена решением федерального учебно-методического объединения по общему образованию протоколом от 08.04.15 №1/15)

С учетом:

  1.  ООП ООО МОУ СОШ№47 пгт. Шерловая Гора
  2. Учебного  плана образовательной организации
  3. Федерального перечня учебников, утвержденных, рекомендованных (допущенных) к исполнению в образовательном процессе в образовательном учреждении, реализующих программное общеобразовательное образование приказом Министерства образования РФ от 14.03.14 №253
  4. УМК Г.В. Дорофеев

Данная программа будет использоваться при обучении учащихся 5 «а» класса.

В процессе преподавания курса математики будут использованы элементы развивающих, личностно-ориентированных, проблемных, проектных, системно-деятельностных технологий; формы организации учебной деятельности: комбинированный урок; урок-демонстрация; урок-практикум; урок-исследование; урок-игра.

Для развития умения логически обосновывать суждения, проводить несложные систематизации при организации итогового повторения предусмотрена индивидуализация и дифференциация обучения: работа в группах, парах на различных этапах урока. Учитывая индивидуальные особенности учащихся при организации контроля необходимо применять дифференцированный подход. Поэтому задания контрольных работ имеют три уровня сложности: 1) базовый; 2) повышенный; 3) высокий.

                                                         Планируемые результаты

 Личностные результаты освоения основной образовательной программы:

1. Осознанное, уважительное и доброжелательное отношение к истории, культуре, религии, традициям, языкам, ценностям народов России и народов мира.

2. Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию.

3.Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде.  

4.  Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания.

5. Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах. Участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций.  

6. Сформированность ценности здорового и безопасного образа жизни.

                                         Метапредметные результаты  

           Метапредметные результаты, включают освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные).

Межпредметные понятия

Условием формирования межпредметных понятий, таких как система, факт, закономерность, анализ, синтез является овладение обучающимися основами читательской компетенции, приобретение навыков работы с информацией, участие в проектной деятельности. В 5 классе будет продолжена работа по формированию и развитию основ читательской компетенции.  

При изучении математики обучающиеся усовершенствуют приобретённые на первом уровне навыки работы с информацией и пополнят их. Они смогут работать с текстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:

• сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;

• выделять главную информацию, выполнять смысловое свёртывание выделенных фактов; представлять информацию в сжатой словесной форме (в виде плана или тезисов) и в наглядно-символической форме в виде таблиц, графических схем.  

• заполнять и дополнять таблицы, схемы, тексты.

В ходе изучения математики обучающиеся приобретут опыт проектной деятельности как особой формы учебной работы, способствующей воспитанию самостоятельности, инициативности, ответственности, повышению мотивации и эффективности учебной деятельности.  

 В соответствии ФГОС ООО выделяются три группы универсальных учебных действий: регулятивные, познавательные, коммуникативные.

Регулятивные УУД

  1. Умение самостоятельно определять цели обучения, ставить и формулировать новые задачи в учебе и познавательной деятельности

 Обучающийся сможет:

  • выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
  • ставить цель деятельности на основе определенной проблемы и существующих возможностей;
  • формулировать учебные задачи как шаги достижения поставленной цели деятельности;
  1. Умение самостоятельно планировать пути достижения целей,   осознанно выбирать способы решения учебных и познавательных задач. Обучающийся сможет:
  • определять необходимые действие(я) в соответствии с учебной и познавательной задачей и составлять алгоритм их выполнения;
  • обосновывать и осуществлять выбор способов решения учебных и познавательных задач;
  • определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
  • выбирать из предложенных вариантов и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;
  • составлять план решения проблемы (выполнения проекта, проведения исследования);
  1. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:
  • определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;
  • систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
  • отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
  • оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
  • находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
  • работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;
  • устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности и по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;
  • сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.
  1. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Обучающийся сможет:
  • свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся средств, различая результат и способы действий;
  • оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;
  • обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов;
  • фиксировать и анализировать динамику собственных образовательных результатов.
  1. Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной. Обучающийся сможет:
  • наблюдать и анализировать собственную учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;
  • соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;
  • принимать решение в учебной ситуации и нести за него ответственность;
  • самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

Познавательные УУД

  1. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, строить логическое рассуждение, умозаключение (дедуктивное, по аналогии) и делать выводы. Обучающийся сможет:
  • подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства;
  • выстраивать логическую цепочку, состоящую из ключевого слова и соподчиненных ему слов;
  • выделять общий признак двух или нескольких предметов или явлений и объяснять их сходство;
  • объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
  • строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
  • строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;
  • излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;
  • выявлять и называть причины события, явления, возможные последствия заданной причины;
  • делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.
  1. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:
  • обозначать символом и знаком предмет и/или явление;
  • определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;
  • строить модель/схему на основе условий задачи и/или способа ее решения;
  • создавать информационные модели с выделением существенных характеристик объекта для определения способа решения задачи;
  • преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
  • строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;
  • анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.
  1. Смысловое чтение. Обучающийся сможет:
  • находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
  • ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
  • устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;
  • преобразовывать текст, «переводя» его в другую модальность, интерпретировать текст.
  1. Формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации. Обучающийся сможет:
  • определять свое отношение к природной среде;
  • распространять экологические знания и участвовать в практических делах по защите окружающей среды;
  • выражать свое отношение к природе через рисунки, сочинения, модели, проектные работы.

10. Развитие мотивации к овладению культурой активного использования словарей и других поисковых систем. Обучающийся сможет:

  • определять необходимые ключевые поисковые слова и запросы;
  • осуществлять взаимодействие с электронными поисковыми системами, словарями;
  • соотносить полученные результаты поиска со своей деятельностью.

Коммуникативные УУД

  1. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:
  • определять возможные роли в совместной деятельности;
  • играть определенную роль в совместной деятельности;
  • принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
  • определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;
  • строить позитивные отношения в процессе учебной и познавательной деятельности;
  • корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы;
  • критически относиться к собственному мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
  • договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
  • организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
  • устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.
  1. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей для планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:
  • отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);
  • соблюдать нормы публичной речи, регламент в монологе и дискуссии;
  • высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога;
  • принимать решение в ходе диалога и согласовывать его с собеседником;
  • использовать наглядные материалы, подготовленные/отобранные под руководством учителя;
  1. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее – ИКТ). Обучающийся сможет:
  • целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;
  • выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;
  • использовать компьютерные технологии для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание  докладов,   создание презентаций и др.;
  • использовать информацию с учетом этических и правовых норм;

Выпускник научится в 5 классе (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

 Числа

  • Оперировать понятиями: натуральное число, обыкновенная дробь, смешанное число;
  • использовать свойства чисел и правила действий с натуральными числами при выполнении вычислений;
  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;
  • выполнять округление натуральных чисел в соответствии с правилами;
  • сравнивать натуральные числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;
  • выполнять сравнение чисел в реальных ситуациях;
  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Статистика и теория вероятностей

  • Представлять данные в виде таблиц, диаграмм,
  • читать информацию, представленную в виде таблицы, диаграммы.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;
  • строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трёх взаимосвязанных величин, с целью поиска решения задачи;
  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;
  • составлять план решения задачи;
  • выделять этапы решения задачи;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;
  • решать задачи на нахождение части числа и числа по его части;
  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;
  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)

Наглядная геометрия

Геометрические фигуры

  • Оперировать понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырёхугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.

В повседневной жизни и при изучении других предметов:

  • решать практические задачи с применением простейших свойств фигур.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
  • вычислять площади прямоугольников.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;
  • выполнять простейшие построения и измерения на местности, необходимые в реальной жизни.

История математики

  • описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;
  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей.

Выпускник получит возможность научиться:

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания;
  • строить цепочки умозаключений на основе использования правил логики.

Числа

  • Оперировать понятиями: натуральное число, множество натуральных чисел, обыкновенная дробь, смешанное число, геометрическая интерпретация натуральных чисел;
  • понимать и объяснять смысл позиционной записи натурального числа;
  • выполнять вычисления, в том числе с использованием приёмов рациональных вычислений, обосновывать алгоритмы выполнения действий;
  • использовать признаки делимости на 2, 5, 3, 9, 10, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости;
  • выполнять округление натуральных чисел с заданной точностью;
  • упорядочивать числа, записанные в виде обыкновенных дробей;
  • находить НОД и НОК чисел и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;
  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;
  • составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов.

Уравнения и неравенства

  • Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство.

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые диаграммы, таблицы данных,
  • Извлекать информацию, представленную в таблицах, на диаграммах;
  • составлять таблицы, строить диаграммы на основе данных.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;
  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;
  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);
  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;
  • выделять этапы решения задачи и содержание каждого этапа;
  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;
  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;
  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчёта;
  • решать разнообразные задачи «на части»,
  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;
  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение); выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задачи указанных типов.

Наглядная геометрия

Геометрические фигуры

  • Извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;
  • изображать изучаемые фигуры от руки.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;
  • вычислять площади прямоугольников, квадратов, объёмы прямоугольных параллелепипедов, кубов.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объёмы комнат;
  • оценивать размеры реальных объектов окружающего мира.

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей.

Содержание курса математики 5 класса

Курс математики 5 класса включает следующие основные содержательные линии: арифметика; элементы алгебры; вероятность и статистика; наглядная геометрия.

Содержание линии «Арифметика» служит фундаментом для дальнейшего изучения учащимися математики и смежных дисциплин, способствует развитию не только вычислительных навыков, но и логического мышления, формированию умения пользоваться алгоритмами, способствует развитию умений планировать и осуществлять деятельность, направленную на решение задач, а также приобретению практических навыков, необходимых в повседневной жизни.

Содержание линии «Элементы алгебры» систематизирует знания о математическом языке, показывая применение букв для обозначения чисел и записи свойств арифметических действий, а также для нахождения неизвестных компонентов арифметических действий.

Содержание линии «Наглядная геометрия» способствует формированию у учащихся первичных представлений о геометрических абстракциях реального мира, закладывает основы формирования правильной геометрической речи, развивает образное мышление и пространственные представления.

Линия «Вероятность и статистика» — обязательный компонент школьного образования, усиливающий его прикладное и практическое значение. Этот материал необходим, прежде всего, для формирования у учащихся функциональной грамотности — умения воспринимать и критически анализировать информацию, представленную в различных формах, понимать вероятностный характер многих реальных зависимостей, производить простейшие вероятностные расчёты. Изучение основ комбинаторики позволит учащемуся выделять комбинации, отвечающие заданным условиям, осуществлять перебор и подсчёт числа вариантов, в том числе в простейших прикладных задачах.

При изучении статистики и вероятности обогащаются представления о современной картине мира и методах его исследования, формируется понимание роли статистики как источника социально значимой информации, и закладываются основы вероятностного мышления.

Натуральные числа и нуль

Натуральный ряд чисел и его свойства

Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.

Запись и чтение натуральных чисел

Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.

Округление натуральных чисел

Необходимость округления. Правило округления натуральных чисел.

Сравнение натуральных чисел, сравнение с числом 0

Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулём, математическая запись сравнений, способы сравнения чисел.

Действия с натуральными числами

Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.

Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.

Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических действий.

Степень с натуральным показателем

Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.

Числовые выражения

Числовое выражение и его значение, порядок выполнения действий.

Деление с остатком

Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.

Свойства и признаки делимости

Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Решение практических задач с применением признаков делимости.

Разложение числа на простые множители

Простые и составные числа, решето Эратосфена.

Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.

Алгебраические выражения

Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий.

Делители и кратные

Делитель и его свойства, общий делитель двух и более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.

Дроби

Обыкновенные дроби

Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).

Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот.

Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.

Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.

Арифметические действия со смешанными дробями.

Арифметические действия с дробными числами.        

Способы рационализации вычислений и их применение при выполнении действий.

Диаграммы

Столбчатые. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.

Решение текстовых задач

Единицы измерений: длины, площади, объёма, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

 Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.

Задачи на части, доли

Решение задач на нахождение части числа и числа по его части. Решение задач на доли.

Логические задачи

Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, перебор вариантов.

Наглядная геометрия

Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Решение практических задач с применением простейших свойств фигур.

История математики

Появление цифр, букв в процессе счёта. Появление десятичной записи чисел.

Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена.  

Тематическое планирование

       Согласно учебному плану МОУ СОШ № 47 пгт Шерловая Гора    на курс математика в 5 классе выделено 5 часов в неделю. Продолжительность учебного года  составляет 34 рабочих недели. Общее количество часов в году составляет 170. В результате изучения курса в течение года будут вноситься коррективы с учётом объективных и субъективных причин.

Тематическое планирование

Номер урока

Тема урока

Кол-во часов

Примечание

1-2

Повторение

2

Глава 1. Линии

8

3

Разнообразный мир линий

1

4-5

Прямая. Части прямой. Ломаная

2

6-7

Длина линии

2

8-9

Окружность

2

10

Обзор и контроль

1

Глава 2. Натуральные числа

13

11-12

Как записывают и читают натуральные числа

2

13-14

Натуральный ряд. Сравнение натуральных чисел

2

15-16

Числа и точки на прямой

2

17-18

Округление натуральных чисел

2

19-21

Решение комбинаторных задач

3

22-23

Обзор и контроль

2

Глава 3. Действия с натуральными  числами

22

24-26

Сложение и вычитание

3

27-31

Умножение и деление

5

32-35

Порядок действий в вычислениях

4

36-38

Степень числа

3

39-42

Задачи на движение

4

43-45

Обзор и контроль

3

Глава 4. Использование свойств действий при вычислениях

12

46-47

Свойства сложения и умножения

2

48-50

Распределительное свойство

3

51-53

Задачи на части

3

54-55

Задачи на уравнивание

2

56-57

Обзор и контроль

2

Глава 5. Углы и многоугольники

9

58-59

Как обозначают и сравнивают углы

2

60-62

Измерение углов

3

63-64

Ломаные и многоугольники

2

65-66

Обзор и контроль

2

Глава 6. Делимость чисел

15

67-69

Делители и кратные

3

70-71

Простые и составные числа

2

72-73

Свойства делимости

2

74-76

Признаки делимости

3

77-79

Деление с остатком

3

80-81

Обзор и контроль

2

Глава 7. Треугольники и четырехугольники

10

82-83

Треугольники и их виды

2

84-85

Прямоугольники

2

86-87

Равенство фигур

2

88-89

Площадь прямоугольника

2

90-91

Обзор и контроль

2

Глава 8. Дроби

18

92-93

Доли

2

94-96

Что такое дробь

3

97-99

Основное свойство дроби

3

100-101

Приведение дробей к общему

знаменателю

2

102-104

Сравнение дробей

3

105-106

Натуральные числа и дроби

2

107-109

Обзор и контроль

3

Глава 9. Действия с дробями

34

110-114

Сложение и вычитание дробей

5

115-117

Смешанные дроби

3

118-122

Сложение и вычитание смешанных дробей

5

123-127

Умножение дробей

5

128-132

Деление дробей

5

133-137

Нахождение части целого и целого по его части

5

138-140

Задачи на совместную работу

3

141-143

Обзор и контроль

3

Глава 10. Многогранники

10

144-145

Геометрические тела и их изображение

2

146-147

Параллелепипед

2

148-149

Объём параллелепипеда

2

150-151

Пирамида

2

152-153

Обзор и контроль

2

Глава 11. Таблицы и диаграммы

9

154-156

Чтение и составление таблиц

3

157-158

Диаграммы

2

159-160

Опрос общественного мнения

2

161-162

Обзор и контроль

2

163-170

Повторение. Итоговые контрольные работы (за 1-е полугодие и за год, 1,3 четвери, входная контрольная работа)

8


Система оценки планируемых результатов

Для оценки планируемых результатов данной программой предусмотрено использование:

  • вопросов и заданий для самостоятельной подготовки;
  • заданий для подготовки к итоговой аттестации;
  • тестовых задания для самоконтроля;

Виды контроля и результатов обучения

  1. Текущий контроль
  2. Тематический контроль
  3. Итоговый контроль

Методы и формы организации контроля

  1. Устный опрос.
  2. Монологическая форма устного ответа.
  3. Письменный опрос:
  1. Математический диктант;
  2. Самостоятельная работа;
  3. Контрольная работа.

Особенности контроля и оценки по математике.

Текущий контроль осуществляется как в письменной, так и в устной форме при выполнении заданий в тетради.

Письменные работы можно проводить в виде тестовых или самостоятельных работ на бумаге Время работы в зависимости от сложности работы 5-10 или 15-20 минут урока. При этом возможно введение оценки «за общее впечатление от письменной работы» (аккуратность, эстетика, чистота, и т.д. ). Эта отметка дополнительная и в журнал выносится по желанию ребенка.

Итоговый контроль проводится в форме контрольных работ практического типа. В этих работах с начала отдельно оценивается выполнение каждого задания, а затем вводится итоговая отметка. При этом итоговая отметка является не средним баллом, а определяется с учетом тех видов заданий, которые для данной работы являются основными.

Оценка ответов учащихся

Оценка – это определение степени усвоения учащимися знаний, умений, навыков в соответствии с требованиями государственного образовательного стандарта.

 1. Устный ответ оценивается отметкой «5», если учащийся:

– полно раскрыл содержание материала в объеме, предусмотренном программой и учебником;

– изложил материал грамотным языком в определенной логической последовательности, точно используя специальную терминологию и символику;

– правильно выполнил рисунки, чертежи, графики, сопутствующие ответу;

– показал умение иллюстрировать теоретические положения конкретными примерами, применять их в новой ситуации при выполнении практического задания;

– продемонстрировал усвоение ранее изученных сопутствующих вопросов, сформированность и устойчивость используемых при ответе умений и навыков;

–   отвечал самостоятельно без наводящих вопросов учителя;

– возможны одна-две неточности при освещении второстепенных вопросов или в рисунках, чертежах и т.д., которые ученик легко исправил по замечанию учителя.

2. Ответ оценивается отметкой «4», если он удовлетворяет в основном требованиям на отметку «5», но при этом имеет один из недостатков:

–   в изложении допущены небольшие пробелы, не исказившие содержание ответа;

– допущены один-два недочета при освещении основного содержания ответа, исправленные после замечания учителя;

– допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в рисунках, чертежах и т.д., легко исправленных по замечанию учителя.

3. Отметка «3» ставится в следующих случаях:

– неполно или непоследовательно раскрыто содержание материала, но показано общее понимание вопроса и продемонстрированы умения, достаточные для дальнейшего усвоения программного материала;

– имелись затруднения или допущены ошибки в определении понятий, использовании специальной терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя;

– учащийся не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме;

– при знании теоретического материала выявлена недостаточная сформированность основных умений и навыков.

Оценка контрольных и самостоятельных письменных работ.

Оценка "5" ставится, если ученик:

  • выполнил работу без ошибок и недочетов в требуемом на «отлично» объеме;
  • допустил не более одного недочета в требуемом на «отлично» объеме;

Оценка "4" ставится, если ученик выполнил работу полностью, но допустил в ней:

  • не более одной негрубой ошибки и одного недочета в требуемом на «отлично» объеме;
  • или не более трех недочетов в требуемом на «отлично» объеме.

Оценка "3" ставится, если ученик правильно выполнил не менее половины работы или допустил:

  • не более двух грубых ошибок в требуемом на «отлично» объеме;
  • или не более одной грубой и одной негрубой ошибки и одного недочета;
  • или не более двух-трех негрубых ошибок;
  • или одной негрубой ошибки и трех недочетов;
  • или при отсутствии ошибок, но при наличии четырех-пяти недочетов.

Критерии выставления оценок за проверочные тесты.

1. Критерии выставления оценок за тест

  • Время выполнения работы: на усмотрение учителя.
  • Оценка «5» - 100 – 90% правильных ответов, «4» - 70-90%, «3» - 50-70%, «2» - менее 50% правильных ответов.


По теме: методические разработки, презентации и конспекты

Рабочая программа по математике класс (автор Виленкин Н.Я.))

Рабочая проргамма содержит пояснительную записку, календарно-тематическое планирование, требования  к подготовке учащихся...

Рабочая программа для 5 класса (автор учебника Афанасьева О.В.)

Рабочая программа для 5 класса (автор учебника Афанасьева О.В.) (ФГОС)...

Рабочая программа для 6 класса. автор Гельфман Э.Г.

Рабочая программа для 6 класса. Разработана с требованием ФГОС ООО. Содержит пояснительную записку, тематическую программу....

Рабочая программа для 5 класса. автор Гельфман Э.Г.

Рабочая программа для 5 класса. расчитана на 6 часов в неделю. разработана с требованием ФГОС ООО....

Рабочая программа "Музыка" 8 класс(авторы Е. Д. Критская, Г. П. Сергеева)

Рабочая программа включает в себя пояснительную записку, перечень музыкальных произведений, календарно-тематическое планирование....

Рабочая программа "Информатика. 5 класс" (автор Л.Л.Босова)

Рабочая программа по информатике и ИКТ для 5-го класса составлена на основе Федерального государственного образовательного стандарта основного общего образования и требований к результатам освоения ос...