Проект «Знание – в действие» Дидактические материалы 7-9 классы
методическая разработка по математике на тему
Скачать:
Вложение | Размер |
---|---|
pashinaia.pptx | 703.7 КБ |
Предварительный просмотр:
Подписи к слайдам:
Как всё начиналось ? Чем больше становится стаж общения учащихся с математикой, тем более абстрактными становятся в учебнике математические задачи. Ученики сталкиваются с проблемой: «А нужна ли будет математика в нашей дальнейшей профессии ? » И тогда мы с учениками 10 класса стали работать над проектом «Знание – в действие», результатом которого стала составленная нами книга прикладных задач по большинству тем математики. Многие эксперименты опасно или невыгодно проводить опытным путём. Математика приходит на помощь и ставит свой эксперимент.
1. В начале нагревания вода имела температуру 6ºС. От нагревания температура воды повышалась каждую минуту на 2ºС. Составьте формулу, которая выражает изменение температуры Т воды от времени t её нагревания. Будет ли эта функция линейной? Через сколько минут вода закипит? О т в е т. Т = 2 t + 6, t = 47 мин. Функция t час Т ◦ С
2. Годовая зарплата агронома состоит из годового оклада и 0,3% этого оклада за каждый процент перевыполнения плана производства сельскохозяйственной продукции. Составьте формулу вычисления годовой зарплаты агронома с месячным окладом 150000 руб. У к а з а н и е. у = 150000 ∙ 12 + 0,003 ∙ 150000 ∙ 12х = 1800000 + 5,4х , где х – процент перевыполнения плана производства сельскохозяйственной продукции. Функция
3. На рисунке изображён график изменения температуры охлаждения смолы. Запишите формулу зависимости между температурой и временем. О т в е т. T ∙ t = 50 Функция Т ◦ С t час
Функция 4. Участок прямоугольной формы площадью 400 м 2 нужно оградить забором. Определите размеры участка. Составьте формулу, по которой вычисляют площадь прямоугольника. Заполните таблицу: Х 5 8 10 20 25 40 50 100 У S 400 400 400 400 400 400 400 400 Постройте график, сделайте вывод. Какой из прямоугольников вы бы выбрали для ограждения? Почему?
Ответ
1. Одна часть стального лома содержит 5% никеля, а другая 40%. Сколько нужно взять лома из каждой части, чтобы получить 140 т стали с содержанием никеля 30%? Р е ш е н и е. Обозначим массу первой части лома через х, а другой – через у. Тогда Система уравнений 5% 40%
Система уравнений 2. Коэффициент трения F ременных передач в зависимости от скорости V скольжения ремня определяют по формуле f = a + bV . Определите постоянные a и b , если на опыте было найдено, что при скорости скольжения V = 0,1 м/с коэффициент трения f 1 = 0 , а при скорости скольжения V = 0,5 м/с – f 2 = 0,5. О т в е т. а = 0,375, b = 0,25.
3. Расстояние между двумя пристанями равно 90 км. Это расстояние по течению реки катер проходит за 3 часа, а против течения – за 4,5 часа. Найдите скорость катера и скорость течения реки. У к а з а н и е. Где v - собственная скорость катера, u – скорость течения реки. Система уравнений
Алгебраические дроби 1. Тракторист должен вспахать участок поля за t часов при норме а гектаров в час. За какое время тракторист обработает этот же участок, если за час он будет пахать на 0,1 га больше нормы? О т в е т.
Алгебраические дроби 2. Поезд мимо телеграфного столба проходит за 20 с, а мимо моста длиной 80 м – за 25 с. Какова длина поезда? Какова скорость поезда?
У к а з а н и е. Когда поезд проходит мимо телеграфного столба, то любая точка поезда на 20 с проходит расстояние х метров, которая равна длине поезда, а когда мимо моста, то (х+80)м за 25 с. Скорость поезда будет: Поскольку скорость поезда будем считать постоянной, то Откуда х = 320 (м), Ответ
3. Автомобиль проехал расстояние между двумя пунктами со скоростью 75 км/час, а возвращался со скоростью 50 км / час. Какова средняя скорость его движения? Алгебраические дроби
Ответ Р е ш е н и е. Задача помогает учащимся установить разницу между средним арифметическим и средним гармоническим чисел а и b , c которыми часто имеют дело в курсе физики. Обозначив расстояние между двумя пунктами через S и искомую среднюю скорость через V , составим уравнение которое даёт возможность найти правильный ответ:
4. Расстояние между двумя станциями длиной S км поезд проходит со скоростью 60 км/час. На сколько необходимо увеличить скорость поезда, чтобы он проходил это расстояние на 2 часа быстрее (максимальная скорость поезда на этом участке не может превышать 100 км/час)? При каких значениях решение возможно? Алгебраические дроби V = 60 км / час На 2 ч быстрее V = ? км / час
Р е ш е н и е. Пусть скорость поезда увеличена на х км/час. Тогда по условию задачи имеем: По условию задачи откуда Итак, задача имеет решение при условии S ≥ 300.
Неравенства 1. Диаметр шкива электродвигателя, который делает 960 оборотов в минуту, равен 150 мм. На сколько миллиметров должен быть меньше диаметр нового шкива, чтобы электродвигатель делал не менее чем 1200 оборотов в минуту? У к а з а н и е. Если диаметр шкива уменьшится на х мм, то задача сводится к решению неравенства
2. Машина стоимостью 4000 руб.(цены относительные) поставлена на капитальный ремонт после 10 лет эксплуатации. Стоимость ремонта 1600 руб. Каким должен быть срок гарантии работы машины после ремонта, чтобы была оправдана его стоимость. У к а з а н и е. Обозначив через х гарантийный срок работы машины, получим неравенство Неравенства
3. В грузовом автомобиле с двумя колёсами спереди и четырьмя сзади шины передних колёс стираются через 20000 км пройденного пути, а задних – через 30000 км. Сколько километров можно проехать на тех же шинах, если их своевременно поменять местами? Неравенства
Р е ш е н и е. Количество резины, которое стирается на одной шине, пока она пригодна, возьмём за единицу. Тогда перед началом эксплуатации автомобиля есть 6 единиц резины. Если шина стоит на переднем колесе, то на 1 км пути стирается единицы, если на заднем - единицы. Итак на 1 км пути стирается единицы резины, а за х километров пути Поскольку в автомобиле может стереться не более 6 единиц резины, то имеем неравенство Шины сотрутся одновременно на пути если каждая из них пройдёт 1/3 пути на переднем колесе. На тех же шинах можно проехать приблизительно 25700 км.
Уравнения с модулем вида 1. По дороге в противоположных направлениях едут два автомобиля со скоростями 70 и 80 км/час. Через какое время расстояние между ними будет равно 15 км, если в данный момент оно составляет S км? У к а з а н и е. Если расстояние между автомобилями S км, а через t часов 15 км, то по условию задачи | S – 150 t | = 15. Если 150 t ≤ S , то S – 150 t = 15 и если
S км 15 км S км 15 км
Квадратные уравнения. 1. Для сооружения склада вместимостью 240 м 3 подготовлен материал для внешних стен общей длиной 32 м и высотой 4 м. Какие размеры должен иметь склад? У к а з а н и е. Задача сводится к решению уравнения: 4х(16 – х) = 240 , где х – один из размеров прямоугольного здания.
2. Для раствора, который содержит 6 кг соли, долили 100 кг воды, после чего концентрация раствора уменьшилась на 25%. Сколько воды в растворе? У к а з а н и е. Массу воды, которая содержится в растворе обозначим через х . Решение задачи сводится к нахождению корней уравнения Квадратные уравнения.
3. Зависимость между площадью использованной земли и валовым доходом из расчёта на 100 га сельскохозяйственных угодий лесостепной полосы можно выразить функцией у ≈ 9 + 9х – 1,5х 2 , где х – площадь сельскохозяйственных угодий (в тыс. га), у – валовой доход на 100 га сельскохозяйственных угодий (в тыс. руб). С какой площади хозяйство будет иметь наибольшую прибыль? У к а з а н и е. Хозяйство будет иметь наибольшую прибыль на 100 га с площади 3 тыс. га, поскольку у ≈ 9+9х-1,5х 2 =-1,5(х-3) 2 +22,5 = 22,5-1,5(х-3) 2 ≤ 22,5. Квадратные уравнения.
V . Прогрессии 1. Ступенчатый шкив состоит из 10 ступеней. Диаметры их образуют арифметическую прогрессию. Наибольший диаметр 300 мм, наименьший - 210 мм. Найдите другие диаметры. О т в е т. 220, 230, …, 290.
Задача 2. Найдите силу F , которую необходимо приложить к свободному концу жгутового каната, чтобы удержать груз Р = 4 103 Н при помощи полиспаста, который состоит из четырёх блоков. Известно, что благодаря трению натяжение каната полиспаста изменяется в геометрической прогрессии, знаменатель которой q = 0,837. О т в е т. F = 1530 Н. V . Прогрессии полиспаст
Список литературы 1. Апанасов П.Т. Методика решения задач с экономическим содержанием. – М.: Высшая школа, 1981. 2. Возняк Г.М. Взаимосвязь теории с практикой в процессе изучения математики. – К.: Радянська школа, 1989. 3. Энциклопедический словарь юного математика/Сост. Савин А.П. – М.: Педагогика, 1985. Электронные издания 1. Большая Российская энциклопедия. - © «Кирилл и Мефодий», 2002. 2. Коллекция 80000 анимаций. - www.animashky.ru
По теме: методические разработки, презентации и конспекты
Великая цель образования - не знание, а действие
Этот материал посвящен проблеме внедрения в систему образования инновационных методов и подходов к реализации коррекционно-образовательного процесса. В работе проведен анализ деятельностного подхода и...
Урок закрепления знаний Арифметические действия с десятичными и обыкновенными дробями.5 класс математика
Урок на закрепление знаний с использованием флипчарта, индивидуальных карточек....
«Великая цель образования это не знания, а действия»
В статье, написанной в соавторстве с учителем биологии Себельдиной Н. Н., рассказывается о возможностях современного урока , и в качестве примера предлагается урок повторения по литературе в 11 классе...
Урок обобщения и систематизации знаний по математике в 5 классе по теме "Действия с десятичными дробями. Старинные меры длины".
Технологическая карта урока математики по УМК «Математика. 5 класс», Н.Я.Виленкин и др., М.: «Мнемозина», 2015г., составленная в соответствии с основными требованиями ФГОС ООО, с описанием поэтап...
Урок обобщения знаний в форме дидактической игры по геометрии в 8 классе по теме «Применение подобия к доказательству теорем и решению задач
Интеллектуальные гонки по теме«Применение подобия к доказательству теорем и решению задач...
Урок по теме: «Арифметические действия с десятичными дробями» (организация проектной деятельности учащихся, проект "Комплектование сладкого новогоднего подарка" 5 класс).
Хотелось бы поделиться одним из примеров групповой работы на уроке математики из практики. При изучении предметной темы «Арифметические действия с десятичными дробями», на этапе работы учащихся по рас...
Дидактический материал для оценки знаний обучающихся по геометрии 7 класса
Данный дидактический материал преднозначен для проведения среза знаний по различным темам курса Геометрии 7 класса, выполнен на основе задач по готовым чертежам....