Использование заданий, направленных на работу с текстом, для организации развития информационно-познавательных способностей обучающихся на уроках химии
методическая разработка по химии по теме

Капин Артем Витальевич

на примере темы "Металлы"

Скачать:

ВложениеРазмер
Microsoft Office document icon me.doc40.5 КБ

Предварительный просмотр:

Железо

ЖЕЛЕЗО, Fe (ferrum), химический элемент VIIIB подгруппы периодической системы элементов, металл. Железо самородное редко встречается в природе, главным образом в минералах феррит, аваруит и метеоритах. В соединениях с кислородом и другими элементами широко распространено в составе многих минералов и руд. По распространенности в земной коре (5,00%) это третий (после кремния и алюминия) элемент; считается, что земное ядро состоит в основном из железа. Основные минералы – гематит (красный железняк) Fe2O3; лимонит, содержащийся, например, в болотной руде; магнетит (магнитный железняк) Fe3O4 и сидерит FeCO3. Наиболее распространенным минералом железа, не являющимся, однако, источником его получения, является пирит (серный колчедан, железный колчедан) FeS2, который иногда называют за его желтый блеск золотом дураков или кошачьим золотом, хотя он в действительности часто содержит небольшие примеси меди, золота, кобальта и других металлов.

В наши дни железо в основном (95%) выплавляют из руд в виде чугунов и сталей и в сравнительно небольших количествах получают восстановлением металлизованных окатышей, а чистое железо – термическим разложением его соединений или электролизом солей. Железо – один из самых пригодных к эксплуатации металлов в сплаве с углеродом (сталь, чугун) – высокопрочная основа конструкционных материалов. Как материал, обладающий магнитными свойствами, железо используется для сердечников электромагнитов и якорей электромашин, а также в качестве слоев и пленок на магнитных лентах.

Чистое железо – катализатор в химических процессах, компонент лекарственных средств в медицине. Железо является существенным химическим компонентом организмов многих позвоночных, беспозвоночных и некоторых растений. Оно входит в состав гема (пигмента эритроцитов – красных кровяных клеток) гемоглобина крови, мышечных тканей, костного мозга, печени и селезенки. Каждая молекула гемоглобина содержит 4 атома железа, которые способны создавать обратимую и непрочную связь с кислородом, образуя оксигемоглобин. Кровь, содержащая оксигемоглобин, циркулирует по телу, поставляя кислород к тканям для клеточного дыхания. Поэтому железо необходимо для дыхания и образования красных кровяных клеток. Миоглобин (или мышечный гемоглобин) снабжает кислородом мышцы. Общее количество железа в человеческом теле (средней массы 70 кг) составляет 3–5 г. Из этого количества 65% Fe находится в гемоглобине. От 10 до 20 мг Fe ежедневно требуется для обеспечения нормального метаболизма среднего взрослого. Красное мясо, яйца, желток, морковь, фрукты, любая пшеница и зеленые овощи в основном обеспечивают организм железом при нормальном питании; при анемии, связанной с недостатком железа в организме, принимают лекарственные препараты железа.

Алюминий

      8,80% массы земной коры составлены алюминием – третьим по распространенности на нашей планете элементом. Мировое производство алюминия постоянно растет. Сейчас оно составляет около 2% от производства стали, если считать по массе. А если по объему, то 5...6%, поскольку алюминий почти втрое легче стали. Алюминий уверенно оттеснил на третье и последующие места медь и все другие цветные металлы, стал вторым по важности металлом продолжающегося железного века. По прогнозам, к концу нынешнего столетия доля алюминия в общем выпуске металлов должна достигнуть 4...5% по массе.

      Причин тому множество, главные из них – распространенность алюминия, с одной стороны, и великолепный комплекс свойств – легкость, пластичность, коррозионная стойкость, электропроводность, универсальность в полном смысле этого слова – с другой.

      Алюминий поздно пришел в технику потому, что в природных соединениях он прочно связан с другими элементами, прежде всего с кислородом и через кислород с кремнием, и для разрушения этих соединений, высвобождения из них легкого серебристого металла нужно затратить много сил и энергии.

      Первый металлический алюминий в 1825 г. получил известный датский физик Ганс Христиан Эрстед, известный в первую очередь своими работами по электромагнетизму. Эрстед пропускал хлор через раскаленную смесь глинозема (окись алюминия Аl2О3) с углем и полученный безводный хлористый алюминий нагревал с амальгамой калия. Затем, как это делал еще Дэви, которому, кстати, попытка получить алюминий электролизом глинозема не удалась, амальгаму разлагались нагреванием, ртуть испарялась, и – алюминий явился на свет. В 1827 г. Фридрих Вёлер получил алюминий иначе, вытеснив его из того же хлорида металлическим калием. Первый промышленный способ получения алюминия, как уже упоминалось, был разработан лишь в 1855 г., а технически важным металлом алюминий стал лишь на рубеже XIX...XX вв.

      Алюминий давно уже перестал быть драгоценным металлом, но некоторые его соединения по-прежнему остаются драгоценными камнями. Монокристаллы окиси алюминия с небольшими добавками красящих окислов – это и ярко-красный рубин и сияющий синий сапфир – драгоценные камни первого – высшего порядка. Цвет им придают: сапфиру – ионы железа и титана, рубину – хрома. Чистая кристаллическая окись алюминия бесцветна, ее называют корундом.

      При сгорании алюминия в кислороде и фторе выделяется много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета «Сатурн» сжигает за время полета 36 т алюминиевого порошка. Идею использования металлов в качестве компонента ракетного топлива впервые высказал Ф.А. Цандер.


По теме: методические разработки, презентации и конспекты

Программа "Выявление и развитие творческих, интеллектуальных способностей обучающихся на уроках ОБЖ и во внеурочной деятельности"

В программе указаны этапы развития творческих и интеллектуальных возможностей оучающихся на уроках ОБЖ и во внеурочной деятельности...

«Развитие творческих интеллектуальных способностей обучающихся на уроках истории и обществознания»

На современном этапе общественного развития школа призвана готовить подрастающее поколение к жизни и труду в современных условиях, для которых характерны состязательность и конкуренция, возрастающие т...

Организация работы по повторению материала и ликвидации пробелов в знаниях обучающихся на уроках химии

Организация работы по повторению материала и ликвидации пробелов в знаниях обучающихся на уроках химии...

ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ РАЗВИТИЯ ХУДОЖЕСТВЕННО-ТВОРЧЕСКИХ СПОСОБНОСТЕЙ ОБУЧАЮЩИХСЯ НА УРОКАХ ХОРЕОГРАФИИ В УЧРЕЖДЕНИЯХ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ

В статье рассмотрены теоретические основы создания педагогических условий как необходимого фактора в развитии и воспитании ребёнка через призму творчества. Приведены доводы о том, что формирование худ...

ПРОГРАММА по выявлению и развитию способностей обучающихся на уроках химии и во внеурочное время

программапо выявлению и развитию способностейобучающихся на уроках химиии во внеурочное время...

«РАЗВИТИЕ СКОРОСТНО-СИЛОВЫХ СПОСОБНОСТЕЙ ОБУЧАЮЩИХСЯ НА УРОКАХ ФИЗИЧЕСКОЙ КУЛЬТУРЫ ПУТЕМ ПРИМЕНЕНИЯ СПЕЦИАЛЬНЫХ УПРАЖНЕНИЙ»

Актуальность исследования состоит в необходимости определения особенностей развития скоростно-силовых способностей у старших школьников, с целью дальнейшего использования полученного материала в постр...