Проект "Теорема Пифагора"
творческая работа учащихся по геометрии
Познакомиться с различными доказательствами теоремы Пифагора.
Понять, что геометрия – это просто.
Увидеть красоту в «трудном» школьном предмете.
Скачать:
Вложение | Размер |
---|---|
proekt_po_matematike_teorema_pifagora.docx | 94.44 КБ |
Предварительный просмотр:
Проект на тему:
Теорема Пифагора
Гипотеза:
Теорема Пифагора – одна из главных теорем геометрии.
Цель работы учеников:
Познакомиться с различными доказательствами теоремы Пифагора.
Понять, что геометрия – это просто.
Увидеть красоту в «трудном» школьном предмете.
Авторы : Некрасов Роман и Шульгина Анастасия ученики 8 класса.
Программа изучения этой темы:
1. История теоремы
2. Формулировки теоремы
3. Доказательства:
а) простейшее;
б) алгебраическое;
в) другие
4.Вывод
История теоремы
Исторический обзор начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4". В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары. Кантор (крупнейший немецкий историк математики) считает, что равенство 32 + 42 = 52 было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея).
По мнению Кантора "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.
Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммураби, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой-на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод: "Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку".
Геометрия у индусов, как и у египтян и вавилонян, была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 18 века до н. э. В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге.
Как мы видим, история математики почти не сохранила достоверных данных о жизни Пифагора и его математической деятельности. Зато легенда сообщает даже ближайшие обстоятельства, сопровождавшие открытие теоремы. Рассказывают, что в честь этого открытия Пифагор принес в жертву 100 быков.
Формулировки теоремы.
Приведем различные формулировки теоремы Пифагора в переводе с греческого, латинского и немецкого языков.
У Евклида эта теорема гласит (дословный перевод):
"В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол".
Латинский перевод арабского текста Аннаирици (около 900 г. до н. э.), сделанный Герхардом Клемонским (начало 12 в.), в переводе на русский гласит:
"Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол".
В Geometria Culmonensis (около 1400 г.) в переводе теорема читается так:
"Итак, площадь квадрата, измеренного по длинной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу".
В первом русском переводе евклидовых "Начал", сделанном Ф. И. Петрушевским, теорема Пифагора изложена так:
"В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол".
Если дан нам треугольник
И притом с прямым углом,
То квадрат гипотенузы
Мы всегда легко найдем:
Катеты в квадрат возводим,
Сумму степеней находим —
И таким простым путем
К результату мы придем.
Доказательства.
Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum- ослиный мост, или elefuga- бегство “убогих”, так как некоторые “убогие” ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозваны по этому “ослами”, были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста.
Простейшее доказательство ABC: квадрат, построенный на гипотенузе∧теоремы получается в простейшем случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников (рис. 1), чтобы убедиться в справедливости теоремы. Например, для АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах,— по два. Теорема доказана.
Алгебраическое доказательство
Дано: ABC-прямоугольный треугольник, С = 90º.
Доказать: AB2=AC2+BC2
Доказательство:
1) Проведем высоту CD из вершины прямого угла С.
2) По определению косинуса угла соsА = AD/AC=AC/AB, отсюда следует
AB*AD=AC2.
3) Аналогично соsВ = BD/BC=BC/AB, значит
AB*BD=BC2.
4) Сложив полученные равенства почленно, получим:
AC2+BC2=АВ*(AD + DB)
AB2=AC2+BC2.
Доказательство Евклида
Дано: ABC-прямоугольный треугольник
Доказать: SABDE=SACFG+SBCHI
Доказательство:
Пусть ABDE-квадрат, построенный на гипотенузе прямоугольного треугольника ABC, а ACFG и BCHI-квадраты, построенные на его катетах. Опустим из вершины C прямого угла перпендикуляр CP на гипотенузу и продолжим его до пересечения со стороной DE квадрата ABDE в точке Q; соединим точки C и E, B и G. Очевидно, что углы CAE=GAB(=A+90°); отсюда следует, что треугольники ACE и AGB(закрашенные на рисунке) равны между собой (по двум сторонам и углу, заключённому между ними). Сравним далее треугольник ACE и прямоугольник PQEA; они имеют общее основание AE и высоту AP, опущенную на это основание, следовательно
SPQEA=2SACE
Точно так же квадрат FCAG и треугольник ^ BAG имеют общее основание GA и высоту AC; значит,
SFCAG=2SGAB
Отсюда и из равенства треугольников ACE и GBA вытекает равновеликость прямоугольника QPBD и квадрата CFGA; аналогично доказывается и равновеликость прямоугольника QPAE и квадрата CHIB. А отсюда, следует, что квадрат ABDE равновелик сумме квадратов ACFG и BCHI, т.е. теорема Пифагора.
| |
| |
| |
| |
|
На этой диаграмме показано на сколько больше доказательств стало в наше время
Карикатуры.
Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также "ветряной мельницей", составляли стихи вроде "Пифагоровы штаны на все стороны равны", рисовали карикатуры.
Теорема Пифагора замечательна и тем, что сама по себе она вовсе не очевидна. Например, свойства равнобедренного треугольника можно видеть непосредственно на чертеже. Но сколько ни смотри на прямоугольный треугольник, никак не увидишь, что между его сторонами есть простое соотношение: c2=a2+b2.
Вывод. Теорема Пифагора - одна из главных и, можно сказать, самая главная теорема геометрии. Значение ее состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии.
Рассмотрев различные типы доказательств теоремы Пифагора, я убедилась в её совершенстве, увидев её красоту, простоту и значимость.
По теме: методические разработки, презентации и конспекты
Презентация "Такая известная теорема Пифагора"
Метод проектов - это модель обучения, которая вовлекает ученика в процесс решения сложных проблем. Тема моего проекта "Такая известная теорема Пифагора". Здесь представлена стартовая презентация по эт...
Урок геометрии 8 класс по теме:" Теорема Пифагора".
Разработан урок по геометрии в 8 классе по теме: "Теорема Пифагора" с презентацией....
Математический праздник "День Пифагора"
Внеклассное мероприятие - игра....
Презентация по теме "По следам Пифагора"
Существует замечательное соотношение между гипотенузой и катетами прямоугольного треугольника...
1 тур всероссийской олимпиады "Пифагор"
Моя дочь и ученица в одном лице участвовала в 1 туре олимпиады "Пифагор". Задания, я думаю, будут интересны и для использования на уроках в качестве дополнительного материала....
Теорема Пифагора
Урок по теме: Теорема Пифагора...
Разработка урока геометрии "Теорема Пифагора"
Урок разработала для оказания методической помощи молодым учителям...