Урок геометрии по теме "Четырехугольники"
презентация к уроку по геометрии (9 класс)

Владимирова Вера Васильевна

Включены материалы для подготовки к ОГЭ

Скачать:

ВложениеРазмер
Office presentation icon chetyrehugolniki.ppt2.71 МБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Четырёхугольник Я бываю очень разным: И кривым, и очень классным. Но количество сторон- Постоянный мой закон. Их четыре у меня. Как же я зовусь, друзья?

Слайд 2

11.11.20. Классная работа. «Четырёхугольники. Подготовка к ОГЭ»

Слайд 3

Вы готовы к уроку и считаете, что эту тему усвоили хорошо. Вам всё будет понятно. Вы совсем не готовы к уроку и считаете, что большинство вопросов вам будут непонятны. Вы недостаточно готовы к данному уроку и тревожитесь, что не все вопросы вам будут понятны.

Слайд 4

Четырёхугольник – это геометрическая фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. Четырёхугольник Выпуклый- все вершины лежит по одну сторону от прямой, проходящей через две его соседние вершины Невыпуклый - вершины лежат по разные стороны от прямой A B C D A B C D Сумма углов выпуклого четырёхугольника равна 360 о

Слайд 5

Четырехугольники в чувашских узорах

Слайд 6

2020 год объявлен в России Годом памяти и славы Юбилейная медаль «75 лет Победы в Великой Отечественной войне 1941—1945 гг. »

Слайд 7

Четырёхугольники Параллелограмм Трапеция Прямоугольник Ромб Квадрат

Слайд 8

Параллелограмм – четырёхугольник, у которого противоположные стороны попарно параллельны Частные виды параллелограмма: прямоугольник и ромб AB || CD BC || AD A B C D

Слайд 9

Свойства параллелограмма В параллелограмме противоположные стороны равны и противоположные углы равны. 2. Диагонали параллелограмма точкой пересечения делятся пополам. A D B C AB = CD BC = AD A D B C О A О = О C B О = О D

Слайд 10

Ромб – это параллелограмм, у которого все стороны равны BC|| AD , AB || CD AB = BC = CD = AD B A C D

Слайд 11

Свойства ромба В ромбе противоположные углы равны. 2. Диагонали ромба точкой пересечения делятся пополам, взаимно перпендикулярны и делят углы ромба пополам ∠ А = ∠ С , ∠ В = ∠ D A О = О C , B О = О D AC ┴ BD ∠ BAO = ∠ DAO, ∠ ABO = ∠ CBO A C D B B A C D О

Слайд 12

Трапеция – четырёхугольник, у которого две стороны параллельны, а две другие не параллельны. BC || AD , AB || CD BC и AD – основания, AB и CD – боковые стороны A B C D

Слайд 13

Средняя линия трапеции Средняя линия трапеции – это отрезок, соединяющий середины боковых сторон. MN - средняя линия A B C D М N Средняя линия трапеции параллельна основаниям и равна их полусумме MN || AD , MN || ВС

Слайд 14

Прямоугольник – это параллелограмм, у которого все углы прямые. A В С D AB || CD , BC || AD ∠ А = ∠ В = ∠ С = ∠ D = 90 о

Слайд 15

Свойства прямоугольника В прямоугольнике противоположные стороны равны и противоположные углы равны. 2. Диагонали прямоугольника равны и точкой пересечения делятся пополам. AB = CD BC = AD BD = AC A О = О C B О = О D A D B C О A D B C

Слайд 16

Квадрат – это прямоугольник, у которого все стороны равны. AB || CD , BC || AD , , AB = CD = BC = AD о ∠ А = ∠ В = ∠ С = ∠ D = 90 A В С D

Слайд 17

Свойства квадрата У квадрата все стороны равны и все углы равны. 2. Диагонали квадрата взаимно перпендикулярны, равны, точкой пересечения делятся пополам и делят углы квадрата пополам. AB = CD = BC = AD ∠ А = ∠ В = ∠ С = ∠ D = 90 AC ┴ BD BD = AC A О = О C , B О = О D ∠ BAO = ∠ DAO, ∠ ABO = ∠ CBO A В С D о A В С D О

Слайд 18

Решение задач ОГЭ Диагональ BD параллелограмма ABCD об­разует с его сторонами углы, равные 65° и 50°. Найдите меньший угол параллелограмма. Задание 18

Слайд 19

Решение задач ОГЭ Задание 18. Найдите величину острого угла параллелограмма ABCD , если биссектриса угла A образует со стороной BC угол, равный 15°. Ответ дайте в градусах. М

Слайд 20

Решение задач ОГЭ Найдите угол АDС равнобедренной трапеции ABCD , если диагональ АС образует с основанием ВС и боковой стороной АВ углы, равные 30° и 50° соответственно.

Слайд 22

Решение задач ОГЭ Задание 18. (у доски) В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ ACD = 104°. Найдите меньший угол между диагоналями параллелограмма. Ответ дайте в градусах.

Слайд 23

В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ ACD = 104°. Найдите меньший угол между диагоналями параллелограмма. Ответ дайте в градусах. Решение. Пусть точка пересечения диагоналей — точка O . Диагонали параллелограмма точкой пересечения делятся пополам, откуда AO = OC = AB = CD . Поскольку OC = CD , треугольник COD — равнобедренный, следовательно, ∠ COD = ∠ CDO = (180° − ∠ ACD )/2 = 76°/2 = 38°. Угол COD является искомым углом между диагоналями параллелограмма . Ответ: 38. о

Слайд 24

Решение задач ОГЭ Задание 18. (у доски) Сторона ромба равна 34, а острый угол равен 60° . Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?

Слайд 25

Задание 20 Какое из следующих утверждений верно? Сумма углов выпуклого четырехугольника равна 180°. 2) Если один из углов параллелограмма равен 60°, то противоположный ему угол равен 120°. 3) Диагонали квадрата делят его углы пополам. 4) Если в четырехугольнике две противоположные стороны равны, то этот четырехугольник — параллелограмм.

Слайд 26

Задание 20 Какое из следующих утверждений верно? Сумма углов выпуклого четырехугольника равна 180°. 2) Если один из углов параллелограмма равен 60°, то противоположный ему угол равен 120°. 3) Диагонали квадрата делят его углы пополам. 4) Если в четырехугольнике две противоположные стороны равны, то этот четырехугольник — параллелогр амм. ответ: 3

Слайд 27

Задание 20 Какие из следующих утверждений верны? Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник. 2) Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб. 3) Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°. 4) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°.

Слайд 28

Задание 20 Какие из следующих утверждений верны? Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник. 2) Если диагонали параллелограмма делят его углы пополам, то этот параллелограмм — ромб. 3) Если один из углов, прилежащих к стороне параллелограмма, равен 50°, то другой угол, прилежащий к той же стороне, равен 50°. 4) Если сумма трех углов выпуклого четырехугольника равна 200°, то его четвертый угол равен 160°. Ответ: 124

Слайд 29

Задание 24 Высота AH ромба ABCD делит сторону CD на отрезки DH = 12 и CH = 3. Найдите высоту ромба.

Слайд 30

Задание 24 Высота AH ромба ABCD делит сторону CD на отрезки DH = 12 и CH = 3. Найдите высоту ромба . Решение. Поскольку ABCD — ромб, AD = DC = DH + HC = 15. Треугольник ADH прямоугольный, поэтому: Ответ: 9.

Слайд 31

Физкультминутка. Прямоугольник - руки в сторону. Ромб - руки вперед. Квадрат - хлопаем в ладоши.

Слайд 32

Самостоятельная работа Вариант 1 1.Диагональ прямоугольника образует угол 56° с одной из его сторон. Найдите острый угол между диагоналями этого прямоугольника. Ответ дайте в градусах 2. В равнобедренной трапеции известны высота, меньшее основание и угол при основании (см. рисунок). Найдите большее основание. 3. Периметр квадрата равен 32. Найдите площадь этого квадрата 4.Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 25° и 40° соответственно. Ответ дайте в градусах. Вариант 2 1.Диагональ прямоугольника образует угол 44° с одной из его сторон. Найдите острый угол между диагоналями этого прямоугольника. Ответ дайте в градусах 2. В равнобедренной трапеции известны высота, меньшее основание и угол при основании (см. рисунок). Найдите большее основание. 3. Периметр квадрата равен 68. Найдите площадь этого квадрата 4. Найдите угол ABC равнобедренной трапеции ABCD , если диагональ AC образует с основанием AD и боковой стороной CD углы, рав­ные 20° и 100° соответственно.

Слайд 33

ответы Вариант 1 Вариант2 1 68 88 2 16 17 3 64 289 4 115 120

Слайд 39

Решение задач ОГЭ Основания трапеции равны 4 и 10. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.

Слайд 40

Решение задач ОГЭ Сумма двух углов равнобедренной трапеции равна 140°. Найдите больший угол трапеции. Ответ дайте в градусах.

Слайд 41

Интересные факты В юго-восточной провинции Китая растут деревья, имеющие квадратное сечение.

Слайд 42

Интересные факты

Слайд 43

Четырехугольники в чувашских узорах

Слайд 44

Мне всё понятно.УРА! Не всё ещё понятно. Мне надо поработать. Я ничего не понял. Придётся заниматься дополнительно.

Слайд 45

Спасибо за урок !


По теме: методические разработки, презентации и конспекты

Вводный урок геометрии в 7-м классе "Краткая история возникновения и развития геометрии. Начальные геометрические сведения"

Вводный урок геометрии в 7-м классе с использованием средств мультимедиа"Краткая история возникновения и развития геометрии. Начальные геометрические сведения"Тип: комбинированный, с приме...

Применение компьютерных технологий на уроках геометрии на примере программы "Живая геометрия"

Живая Геометрия - это новые технологии в преподавании математики, в частности геометрии.На экранах компьютеров можно увидеть точно вычерченные чертежи и графики, ручное построение которых немысл...

Презентация для урока геометрии в 7 коррекционном классе (VII вида) "Геометрия в жизни и в искусстве"

Знакомство с постоянным  присутствием  геометрических  объектов  не  только  в  повседневной  жизни,  но  и  в  искусстве. Воспитание  ...

Презентация к уроку геометрии в 7 классе по теме "Некоторые свойства прямоугольных треугольников". Учебник Л.С. Атанасян Геометрия 7-9.

Презентация к уроку геометрии в 7 классе по теме "Некоторые свойства прямоугольных треугольников"....

Конспект урока геометрии в 7 классе "Мир геометрии"

Урок   «Мир геометрии». «Геометрия является самым могущественным средством  для изощрения наших умственных способностей и дает возможность правильно мыслить и  рассуждать...

Урок геометрии в 7 классе. Тема: «История возникновения и развития геометрии. Прямая и отрезок».

Цель урока: познакомить учащихся с историей возникновения геометрии, систематизировать сведения о взаимном расположении точек и прямых.Задачи: познакомить учащихся с первыми основными геометрическими ...