Открытый урок на тему:"Решение задач по теме «Перпендикулярность прямых и плоскостей».
план-конспект урока по геометрии (10 класс)
Решение задач по теме «Перпендикулярность прямых и плоскостей».
Скачать:
Вложение | Размер |
---|---|
Решение задач по теме «Перпендикулярность прямых и плоскостей». | 86.56 КБ |
Предварительный просмотр:
10.12.2020г.
Есаян А.А.
Открытый урок по геометрии 10 А класс
Тема урока: Решение задач по теме «Перпендикулярность прямых и плоскостей».
Цели:
- закрепить вопросы теории по теме «Перпендикулярность прямой и плоскости»;
- вырабатывать навыки применения теоретических знаний к решению типовых задач на перпендикулярность прямой и плоскости.
Тип урока: комбинированный
Ход урока
I.Организационный момент.
II. Сообщение темы и целей урока.
III. Актуализация опорных знаний и умений.
Теоретический опрос
1. Закончить предложение:
а) две прямые в пространстве называются перпендикулярными, если… (угол между ними равен 90°)
б) прямая называется перпендикулярной к плоскости, если… (она перпендикулярна к любой прямой, лежащей в этой плоскости)
в) если две прямые перпендикулярны к плоскости, то они… (параллельны)
г) если плоскость перпендикулярна к одной из двух параллельных прямых, то она… (перпендикулярна и к другой прямой)
д) если две плоскости перпендикулярны к одной прямой, то они… (параллельны)
2. Дан параллелепипед
а) Назовите:
1) рёбра, перпендикулярные к плоскости (DCC1) (ответ: AD; A1D1; B1C1; BC)
2) плоскости, перпендикулярные ребру BB1 (ответ: (АВС); (A1B1C1))
б) Определите взаимное расположение:
1) прямой CC1 и плоскости (DСВ) (ответ: они перпендикулярны)
2) прямой D1C1 и плоскости (DCB) (ответ: они параллельны)
VI. Решение задач.
1. Решение задач по готовым чертежам (Устно)
№1
Дано: ∆ ABC - прямоугольный; AM ⊥ AC; M ∉ (ABC)
Доказать: AC ⊥ (AMB)
Доказательство: Т.к. AC ⊥ AB и AC ⊥ AM, а AM ⋂ AB, т.е. АМ и АВ лежат в плоскости (АМВ), то AC ⊥ (AMB) по признаку перпендикулярности прямой и плоскости. Ч.т.д.
№2
Дано: ВМDC - прямоугольник, M ∉ (ABC), MB ⊥ AB
доказать: CD ⊥ (ABC)
Доказательство: MB ⊥ BC, т.к. ВМDC – прямоугольник, MB ⊥ AB по условию, BC ⋂ AB, т.е. ВС и АВлежат в плоскости (АВС) ⇒ MB ⊥ (ABC) по признаку перпендикулярности прямой и плоскости. СD ∥ МВпо свойству сторон прямоугольника ⇒ CD ⊥ (ABC) по теореме о двух параллельных прямых, одна из которых перпендикулярна к плоскости (то и другая прямая перпендикулярна к этой плоскости).
Ч.т.д.
№3
Дано: АВСD – прямоугольник, M ∉ (ABC), MB ⊥ BC
Доказать: AD ⊥ AM
Доказательство:
1) ∠ABC = 90°, т.к. АВСD – прямоугольник ⇒ BC ⊥ AB, BS ⊥ MB по условию, MB ⋂ AB = B, т.е. МВ иАВ лежат в плоскости (АМВ) ⇒ BC ⊥ (AMB) по признаку перпендикулярности прямой и плоскости.
2) BC ∥ AD (по свойству сторон прямоугольника) ⇒ AD ⊥ (AMB) по теореме о двух параллельных прямых, одна из которых перпендикулярна плоскости (то и другая прямая перпендикулярна к этой плоскости).
3) Т.к. AD ⊥ (AMB) ⇒ AD ⊥ AM по определению прямой, перпендикулярной плоскости.
Ч.т.д.
№4
Дано: АВСD – параллелограмм, M ∉ (ABC), МВ = МD, МА = МС
Доказать: MO ⊥ (ABC)
Доказательство:
1) Т.к. О – точка пересечения диагоналей параллелограмма, то АО = СО и ВО = DO. ∆ BMD - равнобедренный, т. к. ВМ = МD по условию, значит МО - медиана и высота, т.е. MO ⊥ BD.
2) Аналогично доказывается в ∆ AMC: MO ⊥ AC.
3) Итак, MO ⊥ BD и MO ⊥ AC. а ВD и АС – пересекающиеся прямые, лежащие в плоскости (АВС) ⇒ MO⊥ (ABC) по признаку перпендикулярности прямой и плоскости.
Ч.т.д.
(Устные ответы к каждой задаче требуется обосновывать, проговаривая всякий раз формулировки применяемых теорем)
2. Решение письменных задач №1.2
Через точки P и Q прямой РQ проведены прямые, перпендикулярные к плоскости α и пересекающие её соответственно в точках P1 и Q1. Найдите P1Q1, если PQ = 15 cм; PP1 = 21,5 cм; QQ1 = 33,5 cм.
Решение:
1) PP1 ⊥ α и QQ1 ⊥ α по условию ⇒ PP1 ∥ QQ1 (обосновать);
2) PP1 и QQ1 определяют некоторую плоскость β, α ⋂ β = P1Q1;
3) PP1Q1Q - трапеция с основаниями PP1 и QQ1, проведём PK ∥ P1Q1;
4) QK = 33,5 - 21,5 = 12 (см)
P1Q1 = PK = | = 9 см. |
Ответ: P1Q1 = 9 см.
№2.2
В прямоугольном параллелепипеде ABCDA1B1C1D1 АВ = 9 см; ВС = 8 см; ВD = 17 см. Найдите площадь BDD1B1.
Решение:
1) ∆ ABD: ∠BAD = 90°; АD = BC = 8 см;
ВD = | см; |
2) ∆ DD1B: ∠D1DB = 90°;
DD1 = | = 12 см; |
3) SBB1D1D = BD ∙ DD1 = | см2. |
Ответ: | см2. |
№3.2
Отрезок МН пересекает плоскость α в точке К. Из концов отрезка проведены прямые МЕ и НР, перпендикулярные к плоскости α. НР = 4 см; МЕ = 12 см; НК = 5 см. Найдите отрезок РЕ.
Решение:
1) Т.к. прямые МЕ и НР перпендикулярны к плоскости α, то МЕ ∥ НР (обосновать) и через них проходит некоторая плоскость β. α ⋂ β = EP;
2)МЕ ⊥ EP; НР ⊥ EP(обосновать), т.е. ∠MEK = ∠HPK = 90°;
3) ∆ HPK: KP = | = 3 см; |
4) ∠EMK = ∠PHK (накрест лежащие для параллельных прямых МЕ и НР и секущей МН),
тогда ∆ MEK ∆ HPK по двум углам и | ; т.е. | ⇒ EK = | = 9 см, |
РЕ = РК + КЕ, РЕ = 3 + 9 = 12 см.
Ответ: РЕ = 12 см.
3. Самостоятельная работа (направлена на проверку усвоения материала по данной теме)
V. Подводятся итоги урока. Задание на дом: повторить теоретический материал по изученной теме, глава II, № 216 (подг.к к.р.)
Индивидуальное задание для более сильных учеников. (Вариант III)
Дано: ∆ ABC; AB = AC = BC; CD ⊥ (ABC); AM = MB; DM = 15 дм; CD = 12 дм.
Найти: S∆ ADB
Решение:
1) Т.к. CD ⊥ (FDC) ⇒ CD ⊥ AC и CD ⊥ BC, т.е. ∆ ADC, ∆ BDC – прямоугольные;
2) ∆ ADC = ∆ BDC (по двум катетам) ⇒ AD = BD, т.е. ∆ ADB – равнобедренный и DM – медиана, а значит и высота; 3) DC ⊥ MC ⇒ MCD – прямоугольный,
тогда MC = | = 9; |
4) ∆ ABC – равносторонний, поэтому СМ – медиана и высота, т.е. ∆ MCB – прямоугольный, ∠B = 60°,
sin ∠B = | , тогда | , |
а АВ = ВС (по условию).
5) S∆ ADB = ½ DM ∙ AB;
S∆ ADB = ½ ∙ 15 ∙ | . |
Ответ: |
По теме: методические разработки, презентации и конспекты
7класс Геометрия Решение задач по теме «Смежные и вертикальные углы. Перпендикулярные прямые».
7класс Геометрия Решение задач по теме «Смежные и вертикальные углы. Перпендикулярные прямые»....
Открытый урок по математике в 6 классе. Тема "Решение задач на нахождение дроби и процента от числа"
Урок и презентация по теме "Нахождение дроби и процента от числа" по математике в 6 классе. Урок-закрепления темы. Ход урока построен на решении проблемы: как сохранить здоровье человека, ...
Доклад на тему: Базовые задачи по теме «Решение задач в целых числах».
Докладна тему: Базовые задачи по теме «Решение задач в целых числах»....
Презентация на тему: Базовые задачи по теме «Решение задач в целых числах»
Базовые задачи по теме «Решение задач в целых числах»...
Конспект открытого урока математики в 6 классе на тему: "РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ".
ЦельЗнакомство с алгоритмом решения задач с помощью уравнений...
Открытый урок математики в 7 классе по теме " Решение задач на движение"
Открытый урок математики в 7 классе по теме " Решение задач на движение"...
Решение задач по теме "Перпендикуляр и наклонные. Угол между прямой и плоскостью"
В презентации представлены задачи на готовых чертежах. Урок построен по учебнику Л.С. Атанасяна Геометрия 10-11 классы для обучающихся 10 класса....