Прентация по теме "Сфера и шар" 11 класс геометрия
презентация к уроку по геометрии (11 класс)

Тема урока:
«Сфера и шар.»Цели: ввести понятие сферы, шара и их элементов; вывести уравнение сферы в заданной прямоугольной системе координат; исследовать взаимное расположение сферы и плоскости.
Развивающая: развивать логическое мышление, пространственное воображение; умение сравнивать, проводить аналогию; интерес к предмету; творческие способности учащихся.

Скачать:

ВложениеРазмер
Office presentation icon prezentatsiya.ppt1.57 МБ

Предварительный просмотр:


Подписи к слайдам:

Слайд 1

Тема урока: «Сфера и шар.» Цели : ввести понятие сферы, шара и их элементов; вывести уравнение сферы в заданной прямоугольной системе координат; исследовать взаимное расположение сферы и плоскости. Развивающая: развивать логическое мышление, пространственное воображение; умение сравнивать, проводить аналогию; интерес к предмету; творческие способности учащихся . Подготовил: Чимчарова П.А.

Слайд 2

Сферой называется поверхность, которая состоит из всех точек пространства, находящихся на заданном расстоянии от данной точки. Эта точка называется центром , а заданное расстояние – радиусом сферы, или шара – тела, ограниченного сферой. Шар состоит из всех точек пространства, находящихся на расстоянии не более заданного от данной точки.

Слайд 3

Отрезок, соединяющий центр шара с точкой на его поверхности, называется радиусом шара . Отрезок, соединяющий две точки на поверхности шара и проходящий через центр, называется диаметром шара , а концы этого отрезка – диаметрально противоположными точками шара .

Слайд 4

Чему равно расстояние между диаметрально противоположными точками шара, если известна удаленность точки, лежащей на поверхности шара от центра? ? 18

Слайд 5

Шар можно рассматривать как тело, полученное от вращения полукруга вокруг диаметра как оси.

Слайд 6

Пусть известна площадь полукруга. Найдите радиус шара, который получается вращением этого полукруга вокруг диаметра. ? 4

Слайд 7

Теорема . Любое сечение шара плоскостью есть круг. Перпендикуляр, опущенный из центра шара на секущую плоскость, попадает в центр этого круга. Дано: Доказать:

Слайд 8

Доказательство: Рассмотрим прямоугольный треугольник, вершинами которого являются центр шара, основание перпендикуляра, опущенного из центра на плоскость, и произвольная точка сечения.

Слайд 9

Следствие . Если известны радиус шара и расстояние от центра шара до плоскости сечения, то радиус сечения вычисляется по теореме Пифагора.

Слайд 10

Пусть известны диаметр шара и расстояние от центра шара до секущей плоскости. Найдите радиус круга, получившегося сечения. ? 10

Слайд 11

Чем меньше расстояние от центра шара до плоскости, тем больше радиус сечения.

Слайд 12

В шаре радиуса пять проведен диаметр и два сечения, перпендикулярных этому диаметру. Одно из сечений находится на расстоянии три от центра шара, а второе – на таком же расстоянии от ближайшего конца диаметра. Отметьте то сечение, радиус которого больше. ?

Слайд 13

Задача. На сфере радиуса R взяты три точки, являющиеся вершинами правильного треугольника со стороной а . На каком расстоянии от центра сферы расположена плоскость, проходящая через эти три точки? Дано: Найти:

Слайд 14

Рассмотрим пирамиду с вершиной в центре шара и основанием – данным треугольником. Решение:

Слайд 15

Найдем радиус описанной окружности, а затем рассмотрим один из треугольников, образованных радиусом, боковым ребром пирамиды и высотой,. Найдем высоту по теореме Пифагора. Решение:

Слайд 16

Наибольший радиус сечения получается, когда плоскость проходит через центр шара. Круг, получаемый в этом случае, называется большим кругом . Большой круг делит шар на два полушара .

Слайд 17

В шаре, радиус которого известен, проведены два больших круга. Какова длина их общего отрезка? ? 12

Слайд 18

Плоскость и прямая, касательные к сфере. Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью. Касательная плоскость перпендикулярна радиусу, проведенному в точку касания.

Слайд 19

Пусть шар, радиус которого известен, лежит на горизонтальной плоскости. В этой плоскости через точку касания и точку В проведен отрезок, длина которого известна. Чему равно расстояние от центра шара до противоположного конца отрезка? ? 6

Слайд 20

Прямая называется касательной , если она имеет со сферой ровно одну общую точку. Такая прямая перпендикулярна радиусу, проведенному в точку касания. Через любую точку сферы можно провести бесчисленное множество касательных прямых.

Слайд 21

Дан шар, радиус которого известен. Вне шара взята точка, и через нее проведена касательная к шару. Длина отрезка касательной от точки вне шара до точки касания также известна. На каком расстоянии от центра шара расположена внешняя точка? ? 4

Слайд 22

Стороны треугольника 13см, 14см и 15см. Найти расстояние от плоскости треугольника до центра шара, касающегося сторон треугольника. Радиус шара равен 5 см. Задача. Дано: Найти:

Слайд 23

Сечение сферы, проходящее через точки касания, - это вписанная в треугольник АВС окружность. Решение:

Слайд 24

Вычислим радиус окружности, вписанной в треугольник. Решение:

Слайд 25

Зная радиус сечения и радиус шара, найдем искомое расстояние. Решение:

Слайд 26

Через точку на сфере, радиус которой задан, проведен большой круг и сечение, пересекающее плоскость большого круга под углом шестьдесят градусов. Найдите площадь сечения. ? π

Слайд 27

Взаимное расположение двух шаров. Если два шара или сферы имеют только одну общую точку, то говорят, что они касаются. Их общая касательная плоскость перпендикулярна линии центров (прямой, соединяющей центры обоих шаров).

Слайд 28

Касание шаров может быть внутренним и внешним.

Слайд 29

Расстояние между центрами двух касающихся шаров равно пяти, а радиус одного из шаров равен трем. Найдите те значения, которые может принимать радиус второго шара. ? 2 8

Слайд 30

Две сферы пересекаются по окружности . Линия центров перпендикулярна плоскости этой окружности и проходит через ее центр.

Слайд 31

Две сферы одного радиуса, равного пяти, пересекаются, а их центры находятся на расстоянии восьми. Найдите радиус окружности, по которой сферы пересекаются. Для этого необходимо рассмотреть сечение, проходящее через центры сфер. ? 3

Слайд 32

Вписанная и описанная сферы. Сфера (шар) называется описанной около многогранника, если все вершины многогранника лежат на сфере.

Слайд 33

Какой четырехугольник может лежать в основании пирамиды, вписанной в сферу? ?

Слайд 34

Сфера называется вписанной в многогранник, в частности, в пирамиду, если она касается всех граней этого многогранника (пирамиды).

Слайд 35

В основании треугольной пирамиды лежит равнобедренный треугольник, основание и боковые стороны известны. Все боковые ребра пирамиды равны 13. Найти радиусы описанного и вписанного шаров. Задача. Дано: Найти:

Слайд 36

I этап. Нахождение радиуса вписанного шара. 1) Центр описанного шара удален от всех вершин пирамиды на одинаковое расстояние, равное радиусу шара, и в частности, от вершин треугольника АВС. Поэтому он лежит на перпендикуляре к плоскости основания этого треугольника, который восстановлен из центра описанной окружности. В данном случае этот перпендикуляр совпадает с высотой пирамиды, поскольку ее боковые ребра равны. Решение:

Слайд 37

2) Вычислим радиус описанной около основания окружности. Решение:

Слайд 38

3) Найдем высоту пирамиды. Решение:

Слайд 39

4) Радиус описанного шара найдем из треугольника, образованного радиусом шара и частью высоты, прилежащей к основанию пирамиды. Решение:

Слайд 40

Соединим центр вписанного шара со всеми вершинами пирамиды, тем самым мы разделим ее на несколько меньших пирамид. В данном случае их четыре. Высоты всех пирамид одинаковы и равны радиусу вписанного шара, а основания – это грани исходной пирамиды. Решение: II этап. Нахождение радиуса вписанного шара.

Слайд 41

1) Найдем площадь каждой грани пирамиды и ее полную поверхность. Решение:

Слайд 42

2) Вычислим объем пирамиды и радиус вписанного шара. Решение:

Слайд 43

Второй способ вычисления радиуса вписанной сферы основан на том, что центр шара, вписанного в двугранный угол, равноудален от его сторон, и, следовательно, лежит на биссекторной плоскости.

Слайд 44

Итог урока Сегодня вы познакомились с: определением сферы, шара; взаимным расположением сферы и плоскости; нахождением радиуса вписанного шара.

Слайд 45

Заключение На этом наш урок закончен Спасибо за работу


По теме: методические разработки, презентации и конспекты

Урок-презентация-игра, 7 класс, Геометрия "Знаете ли вы геометрию?"

Урок-презентация-игра, 7 класс, Геометрия "Знаете ли вы геометрию?"...

открытый урок по геометрии в 7 классе "Геометрия треугольника"

Урок построен на обобщении темы "Медианы, биссектрисы и высоты треугольника. Свойства равнобедренного треугольника"....

Факультатив по геометрии для для 8 класса "Геометрия в задачах"

Факультатив по геометрии для 8 класса "Геометрия в задачах" расчитан на 35 часов...

Программа факультативного курса по геометрии 7 класс "Геометрия вокруг нас"

Курс расчитана на 34 часа и предназначен для развития математических способностей учащихся....

Программа факультативного курса по геометрии 8 класс "Геометрия в задачах"

Факультатив предназначен для развития математических способностей учащихся 8 класса....

Рабочая программа 7 класс. Геометрия. 2ч. в неделю, авторы учебника: Геометрия 7-9 классы: учебник для общеобразовательных организаций / Л.С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др

Рабочая программа составлена для 7 классов базового уровня изучения предмета Геометрия общеобразовательных учреждений. Содержит разделы: аннотация, цели, учебно- тематический план, планируемые результ...

Рабочая программа 9 класс. Геометрия. 2ч. в неделю, авторы учебника: Геометрия 7-9 классы: учебник для общеобразовательных организаций / Л.С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др

Рабочая программа составлена для 9 классов базового уровня изучения предмета Геометрия общеобразовательных учреждений. Содержит разделы: аннотация, цели, учебно- тематический план, планируемые результ...