Урок по геометрии “Решение задач по теме «Теорема Пифагора»” 8 класс
план-конспект урока по геометрии (8 класс)
Цель урока: Применение теоремы Пифагора при решении задач.
Задачи:
Обобщить и систематизировать знания учащихся по теме.
Развивать внимание учащихся, логическое мышление, математическую речь.
Прививать интерес к предмету геометрия.
Тип урока: урок обобщения и закрепления полученных знаний.
Формы работы на уроке: фронтальная, индивидуальная, самостоятельная.
Оборудование: компьютер; мультимедийный проектор; презентация к уроку.
Скачать:
Вложение | Размер |
---|---|
1_reshenie_zadach_po_teme_teorema_pifagora.doc | 674.5 КБ |
1_prezentatsiya_reshenie_zadach_tpifagora.pptx | 972.67 КБ |
Предварительный просмотр:
МБОУ «Апраксинская СОШ»
Урок по геометрии, 8 класс
“Решение задач по теме
«Теорема Пифагора»”
Подготовила и провела: Алякина Е.И.
Декабрь 2020
Решение задач по теме: «Терема Пифагора»
Цель урока:
Применение теоремы Пифагора при решении задач.
Задачи:
- Обобщить и систематизировать знания учащихся по теме.
- Развивать внимание учащихся, логическое мышление, математическую речь.
- Прививать интерес к предмету геометрия.
Тип урока: урок обобщения и закрепления полученных знаний.
Формы работы на уроке: фронтальная, индивидуальная, самостоятельная.
Оборудование: компьютер; мультимедийный проектор; презентация к уроку.
Ход урока
1. Мотивационно-организационный этап.
Приветствие, проверка готовности к уроку (рабочих тетрадей, учебников, письменных принадлежностей).
- Ребята, мы продолжаем изучать одну из самых известных теорем, теорему Пифагора. Значение теоремы Пифагора состоит в том, что с её помощью можно доказать многие другие теоремы и решить множество задач.
Ещё в 17 веке немецкий астроном и математик И. Кеплер сказал, что геометрия обладает двумя великими сокровищами. Первое – это теорема Пифагора, которую можно сравнить с мерой золота. А второе – деление отрезка в крайнем и среднем отношении, которое напоминает драгоценный камень.
Древнегреческий философ и математик (VI в до н.э.) Пифагор – едва ли не самый популярный за всю историю человечества. Вокруг его личности образовалось множество легенд. Одни его называли математиком, пророком, философом, другие шарлатаном. Пифагор много путешествовал. Пифагор основал школу «Пифагорийский союз», в школу принимались молодые представители аристократии, с большими церемониями, после долгих испытаний. Каждый вступающий отрекался от своего имущества и давал клятву хранить в тайне учения основателя. Пифогорийцы занимались математикой, философией, естественными науками, сделали много важных открытий в арифметике и геометрии. Но в школе существовал Декрет, по которому авторство всех математических работ приписывалось Пифагору.
Напомните, пожалуйста. формулировку теоремы Пифагора.
(В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов)
А обратная теорема?
Доказательство теоремы называли «мостом ослов», т.к. слабые ученики, заучивающие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора, служащую для них вроде непреодолимого моста. Или «бегство убогих», т.к. некоторые «убогие» ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Саму теорему называли «ветряной мельницей», «теоремой – бабочкой» или «теоремой невесты». Известно около 150, а по некоторым источникам около 500 различных доказательств теоремы Пифагора, поэтому она занесена в книгу рекордов Гиннеса.
Однако эту теорему знали за много лет до Пифагора. Так, за 1500 лет до Пифагора древние египтяне знали о том, что треугольник со сторонами 3, 4и 5 является прямоугольным и применяли этот способ для строительства пирамид.В самом древнем индийском геометрическом сборнике «Сульвасутра» («Правила веревки, 600 год до н.э.) даются правила построения прямых углов при помощи веревки с узлами, расстояния между которыми равны 15, з6 и з9 падас (мера длины). В Древнем Китае уже около 2200г. до н.э. для треуголдьника со стороной 3, 4, 5 было найдено правило «гоу-гоу», с помощью которого можно было по известной гипотенузе и одному из катетов находить другой неизвестный катет, а так же гипотенузу, если известны оба катета.
2. Устный опрос
- Какой треугольник называется прямоугольным? (если есть прямой угол)
- Чему равна сумма углов прямоугольного треугольника? (1800)
- Чему равна сумма острых углов в прямоугольном треугольнике? (900)
- Сформулируйте свойство катета, лежащего против угла в 30 градусов.
(Катет прямоугольного треугольника, лежащий против угла в 30° равен половине гипотенузы)
- Сформулируйте теорему Пифагора.
(В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов)
- Как называется сторона противолежащая прямому углу? (Гипотенуза)
- Как называется сторона прилежащая к прямому углу? (Катет)
3. Решение задач (устно)
4. Решение задач
Найти: ВС.
№ 2.
На какое расстояние следует отодвинуть от стены дома нижний конец лестницы, длина которой 13 м, чтобы верхний ее конец оказался на высоте 12 м?
№3.
Дано: ∆АВС равнобедренный, АВ = 13 см,
ВД – высота, ВД=12 см
Найти: АС
№ 4.
Дано: ABCD – ромб, АС, ВД – диагонали, АС = 12 см, BD = 16 см.
Найти: PABCD
№ 5.
Угол С=900, а угол B=300. Гипотенуза АВ = 6. Найдите сторону BC.
5. Физкультпауза
6. Тест
1. Теорему какого учёного мы применяли сегодня на уроке?
а) Демокрита; б) Магницкого; в) Пифагора; г) Ломоносова.
2. Что открыл этот математик?
а) теорему; б) рукопись; в) древний храм; г) задачу.
3. Как называется большая сторона в прямоугольном треугольнике?
а) медиана; б) катет; в) биссектриса; г) гипотенуза.
4. Почему теорему назвали «теоремой невесты»
а)потому, что она была написана для невесты;
б) потому, что она была написана невестой;
в) потому, что чертеж похож на «бабочку», а «бабочка» переводится как «нимфа» или» невеста»;
г) потому, что это загадочная теорема.
5. Почему теорему назвали «мостиком ослов»
а) она применялась для дрессировки осликов;
б) только умный и упрямый мог преодолеть этот мостик и доказать эту теорему;
в) написали ее «ослики»;
г) очень сложное доказательство теоремы.
6. В теореме Пифагора квадрат гипотенузы равен
а) сумме длин сторон треугольника; б) сумме квадратов катетов;
в) площади треугольника; г) площади квадрата.
7. Чему равны стороны египетского треугольника?
а) 1, 2, 3; б) 3,4,5; в)2,3,4; г) 6,7,8.
7. Дифференцированная самостоятельная работа.
Обучающимся предлагается выбрать для решения любые 2-4 задания. Проверка при наличии времени по готовым ответам на уроке, либо работы сдают на проверку.
Ответы
№ задачи | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Ответ | 10 | 5 | 2V2 | 16 | 16 | V2 | V3 |
8. Итог урока, выставление оценок.
Домашнее задание - № 491, № 492, № 493.
Р е ф л е к с и я
«Я повторил…» «Я узнал…»
«Я закрепил…» «Я научился решать…»
«Мне понравилось…»
Самостоятельная работа
Предварительный просмотр:
Подписи к слайдам:
Древнегреческий философ и математик ( VI в до н.э.)- Пифагор – едва ли не самый популярный ученый за всю историю человечества. Вокруг личности Пифагора образовалась множество легенд. Одни называли его математиком, пророком, философом, другие шарлатаном. Судить о правдивости высказываний сложно. Пифагор много путешествовал, после возвращения на родину- в Кротон, начинается самый славный период его биографии. Пифагор
Пифагор основывает школу – пифагорейский союз, состоявший из молодых представителей аристократии, куда принимались с большими церемониями после долгих испытаний. Каждый вступающий отрекался от своего имущества и давал клятву хранить в тайне учения основателя.
Пифагорейцы занимались математикой, философией, естественными науками, сделали много важных открытий в арифметике и геометрии. Но в школе существовал Декрет, по которому авторство всех математических работ приписывалось Пифагору.
Различные формулировки теоремы Пифагора «В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов (общепризнанная) « Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов , построенных на катетах ». (во времена Пифагора) Евклид (дословный перевод): "В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол". В первом русском переводе евклидовых "Начал", сделанном Ф. И. Петрушевским: "В прямоугольных треугольниках квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол". Латинский перевод арабского текста Аннаирици (около 900 г. до н. э. ): "Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол".
2 . Устный опрос 1. Какой треугольник называется прямоугольным? 2. Чему равна сумма углов прямоугольного треугольника? 3.Чему равна сумма острых углов в прямоугольном треугольнике? 4. Сформулируйте свойство катета, лежащего против угла в 30 градусов. 5. Сформулируйте теорему Пифагора. 6. Как называется сторона противолежащая прямому углу? 7. Как называется сторона прилежащая к прямому углу?
х Найдите х А В С D 4 3 О Тренировочные задания
Найдите х А В С D х 4см 3см
Найдите х В А 5 дм С х М 3 дм 5 дм
х А В С D О АС = 6 см, В D = 8 см. Найдите х 4 3
Найдите х D С F 6 дм E х 135 0 4 5 0 45 0 6 дм
4 см 6 см A D B C А BCD - прямоугольник Найдите х х 6 см
A D B C А BCD - квадрат Найдите х х х х
В А С 5 см 7 см № 1. Найти: ВС. 4 . Р е ш е н и е з а д а ч
№ 2. На какое расстояние следует отодвинуть от стены дома нижний конец лестницы, длина которой 13 м, чтобы верхний ее конец оказался на высоте 12 м? 13 х 12
А B C D ? 12 см 13 см Дано: ∆АВС равнобедренный АВ = 13 см, ВД – высота, ВД=12 см Найти: АС № 3.
А В С Д О Дано: ABCD – ромб, АС = 12 см, BD = 16 см . Найти: P ABCD № 4.
№ 5. Угол С= 90 0 , а угол B=30 0. , гипотенуза АВ = 6. Найдите сторону BC.
Тест 1. Теорему какого учёного мы применяли сегодня на уроке? а ) Демокрита ; б) Магницкого; в) Пифагора; г) Ломоносова. 2 . Что открыл этот математик а) теорему; б) рукопись; в) древний храм; г) задачу. 3 . Как называется большая сторона в прямоугольном треугольнике? а) медиана; б) катет; в) биссектриса; г) гипотенуза . 4. Почему теорему назвали «теоремой невесты» а)потому , что она была написана для невесты; б ) потому, что она была написана невестой; в ) потому, что чертеж похож на «бабочку», а «бабочка » переводится как «нимфа» или» невеста»; г ) потому, что это загадочная теорема.
5 . Почему теорему назвали «мостиком ослов» а) она применялась для дрессировки осликов; б) только умный и упрямый мог преодолеть этот мостик и доказать эту теорему; в) написали ее «ослики»; г) очень сложное доказательство теоремы. 6 . В теореме Пифагора квадрат гипотенузы равен а) сумме длин сторон треугольника; б) сумме квадратов катетов; в) площади треугольника; г) площади квадрата. 7 . Чему равны стороны египетского треугольника? а ) 1, 2, 3; б) 3,4,5; в ) 2,3,4 ; г) 6, 7, 8.
8. Домашнее задание: № 491, № 492, № 493.
8. Итог урока «Как хорошо, когда благоденствие человека основано на законах разума». Будьте благоразумными. Теорема Пифагора издавна широко применялась в разных областях науки, техники и практической жизни. О ней писали в своих произведениях римский архитектор и инженер Витрувий , греческий писатель-моралист Плутарх, математик v века Прокл и другие.
По теме: методические разработки, презентации и конспекты
Урок 8 класс по геометрии "Решение задач с помощью теоремы Пифагора.
Использование кейс - технологий на уроках математики....
Конспект урока по геометрии в 8классе по теме "Теорема Пифагора" .
Данный урок - урок новых знаний с использованием ЭОР....
Решение задач по теме: "Теорема Пифагора"
Решение задач по теореме Пифагора. Урок-презентация...
Презентация по теме "Решение задач по теме "Теорема Пифагора""
Данную презентацию можно использовать для подготовки к ОГЭ по математике. Задания трёх уровней сложности....
Решение задач по теме "Теорема Пифагора"
Презентация содержит задачи по теме "Теорема Пифагора".Перед заданием ставится вопрос, позволяющий вспомнить необходимый теоретический материал.К каждой задаче представлено подробное решение...
Решение задач по теме "Теорема Пифагора"
урок повторения и обощения материала, подготовка к контрольной работе....
Технологическая карта урока : Решение задач по теме "Теорема Пифагора"
Данный урок проводится для изучения теоремы Пифагора; отработки практических навыков решения задач в прямоугольном треугольнике....