рабочая программа по геометрии 10-11,Атанасян
рабочая программа по геометрии (11 класс)

Буровникова Ирина Васильевна

Предназначена дя учителей ,работающих в 10-11 классах

Скачать:

ВложениеРазмер
Файл poyasnitelnaya_zapiska_geometriya_10-11.docx42.3 КБ

Предварительный просмотр:

Пояснительная записка.

Рабочая программа по  геометрии для 10,11 классов   естественно –научного профиля  физико-математического направления составлена  в соответствии:

- с положением о рабочей программе по учебному предмету,курсу дисциплине ( модулю );

- авторской программой по геометрии Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. (Программы общеобразовательных учреждений. Геометрия. 10 -11 классы/ сост. Т. А. Бурмистрова. – М.: Просвещение, 2016).

Используемый УМК

 «Геометрия, 10-11» авторов  Л.С. Атанасяна,  В.Ф.Бутусова, С.Б. Кадомцева и др., 2016 г.,  рекомендован министерством образования Российской Федерации.

В соответствии с идеями стандартов нового поколения УМК содержит достаточный практический материал:

-для освоения основных предусмотренных стандартом умений и накопления опыта в использовании приобретенных знаний и умений в практической деятельности и повседневной жизни по всем разделам курса геометрии;

-для формирования стандартных универсальных учебных действий, относящихся к поиску и выделению необходимой информации, структурированию знаний, выбору наиболее эффективных способов решения задач, осмыслению текста и рефлексии способов и условий действий.

Уделяется внимание и формированию знаково- символических и логических действий.

Баланс теории и практических заданий в учебниках нацелен на овладение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; на способность и готовность к самостоятельному поиску методов решения практических задач как метапредметному результату обучения.

Предлагаемый учебник и дидактические материалы представляет собой органическое объединение теоретического материала с системой упражнений, развивающей теорию, иллюстрирующей ее применение, обеспечивающей усвоение методов применения теории к решению задач.

Цели

Цели изучения математики в 10-11 классах.

В направлении личностного развития:

1) развитие логического и практического мышления, культуры речи, способности к умственному эксперименту;

2) формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

3) воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;

4) формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

5) развитие интереса к математическому творчеству и математических способностей.

В метапредметном направлении:

1) формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

2) развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

3) формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимых для различных сфер человеческой деятельности.

В предметном направлении:

1) овладение математическими знаниями и умениями, необходимыми для продолжения обучения в общеобразовательных учреждениях, изучение смежных дисциплин, применения в повседневной жизни;

2) создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.

Основные задачи курса:

  • 1) продолжение содержательной линии «Геометрия»; обеспечение преемственности курсов планиметрии и стереометрии;
  • 2) изучение свойств пространственных фигур; формирование умений применять полученные знания для решения практических задач;
  • 3) создание условий для существенной дифференциации содержания обучения старшеклассников с широкими и гибкими возможностями построения школьниками индивидуальных образовательных программ;
  • 4) формирование понимания геометрии, несмотря на оперирование ею идеализированными образами реальных объектов, как важнейшей практико- ориентированной науки, знания которой необходимы во многих смежных дисциплинах и на стыке наук.
  • 5) расширение возможностей для более эффективной и дифференцированной подготовки выпускников к итоговой аттестации и освоению программ высшего образования.
Общеучебные умения, навыки и способы деятельности

В ходе изучения математики в профильном курсе старшей школы учащиеся продолжают овладение разнообразными способами деятельности, приобретают и совершенствуют опыт:

проведения доказательных рассуждений, логического обоснования выводов, использования различных языков математики для иллюстрации, интерпретации, аргументации и доказательства;

решения широкого класса задач из различных разделов курса, поисковой и творческой деятельности при решении задач повышенной сложности и нетиповых задач;

планирования и осуществления алгоритмической деятельности: выполнения и самостоятельного составления алгоритмических предписаний и инструкций на математическом материале; использования и самостоятельного составления формул на основе обобщения частных случаев и результатов эксперимента; выполнения расчетов практического характера;

построения и исследования математических моделей для описания и решения прикладных задач, задач из смежных дисциплин и реальной жизни; проверки и оценки результатов своей  работы, соотнесения их с поставленной задачей, с личным жизненным опытом;

самостоятельной работы с источниками информации, анализа, обобщения и систематизации полученной информации, интегрирования ее в личный опыт.

Общая характеристика учебного предмета

В профильном курсе содержание образования, представленное в основной школе, развивается в следующих направлениях:

• расширение системы сведений о свойствах плоских фигур, систематическое изучение свойств пространственных тел, развитие представлений о геометрических измерениях;

• совершенствование математического развития до уровня, позволяющего свободно применять изученные факты и методы при решении задач из различных разделов курса, а также использовать их в нестандартных ситуациях;

• формирование способности строить и исследовать простейшие математические модели при решении прикладных задач, задач из смежных дисциплин, углубление знаний об особенностях применения математических методов к исследованию процессов и явлений в природе и обществе.  

Содержание математического образования в средней  школе формируется на основе фундаментального ядра школьного математического образования. В программе оно представлено в виде совокупности содержательных разделов, конкретизирующих соответствующие блоки фундаментального ядра применительно к средней школе. Программа регламентирует объем материала, обязательного для изучения в средней школе, а также дает примерное его распределение в 11классе.

Содержание математического образования в средней школе включает следующие разделы: алгебра, функции, начала математического анализа, вероятность и статистика, геометрия. Наряду с этим в него включены два дополнительных раздела: логика и множества, математика в историческом развитии, что связано с реализацией целей обще интеллектуального и общекультурного развития учащихся. Содержание каждого из этих разделов разворачивается в содержательно-методическую линию, пронизывающую все основные разделы содержания математического образования на данной ступени обучения.

Раздел «Геометрия» — развивается  у учащихся пространственное воображение и логическое мышление путем систематического изучения свойств геометрических фигур на плоскости и в пространстве и применения этих свойств при решении задач вычислительного и конструктивного характера. Существенная роль при этом отводится развитию геометрической интуиции. Сочетание наглядности со строгостью является неотъемлемой частью геометрических знаний. Материал, относящийся к блокам «Координаты» и «Векторы», в значительной степени несет в себе межпредметные знания, которые находят применение, как в различных математических дисциплинах, так и в смежных предметах.

Раздел «Математика в историческом развитии» предназначен для формирования представлений о математике как части человеческой культуры, для общего развития школьников, для создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рассмотрении проблематики основного содержания математического образования.

Место предмета в базисном учебном плане

  Согласно федеральному базисному учебному плану для образовательных учреждений Российской Федерации и календарно-тематическому планированию на  2018-2020 учебные гоы на изучение геометрии в 10  классе отводится 68 часов из расчёта 2 часа в неделю, на  2019-20 учебный год в 11  классе отводится 66 часов из расчёта 2 часа в неделю.Итого 138 часов.

Планируемые результаты обучения

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

  1. формирование ответственного отношения к учению, готовности и способности, обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познаванию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
  2. осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
  3. формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
  4. формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
  5. умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
  6. критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
  7. креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
  8. умение контролировать процесс и результат учебной математической деятельности;
  9. способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные: метапредметными результатами изучения курса «Геометрия» является формирование универсальных учебных действий (УУД).

регулятивные УУД:

– самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;

– выдвигать версии решения проблемы, осознавать конечный результат, выбирать средства достижения цели из предложенных или их искать самостоятельно;

– составлять (индивидуально или в группе) план решения проблемы (выполнения проекта);

– подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;

– работая по предложенному или самостоятельно составленному плану, использовать наряду с основными и дополнительные средства (справочная литература, сложные приборы, компьютер);

– планировать свою индивидуальную образовательную траекторию;

– работать по самостоятельно составленному плану, сверяясь с ним и с целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);

– свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;

– в ходе представления проекта давать оценку его результатам;

– самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;

– уметь оценить степень успешности своей индивидуальной образовательной деятельности;

– давать оценку своим личностным качествам и чертам характера («каков я»), определять направления своего развития («каким я хочу стать», «что мне для этого надо сделать»).

Средством формирования регулятивных УУД служат технология проблемного диалога на этапе изучения нового материала и технология оценивания образовательных достижений (учебных успехов).

познавательные УУД:

– анализировать, сравнивать, классифицировать и обобщать факты и явления;

– осуществлять сравнение, сериацию и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций; строить классификацию путём дихотомического деления (на основе отрицания);

– строить логически обоснованное рассуждение, включающее установление причинно-следственных связей;

– создавать математические модели;

– составлять тезисы, различные виды планов (простых, сложных и т.п.). Преобразовывать информацию из одного вида в другой (таблицу в текст, диаграмму и пр.);

– вычитывать все уровни текстовой информации.

– уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность.

– понимая позицию другого человека, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории. Для этого самостоятельно использовать различные виды чтения (изучающее, просмотровое, ознакомительное, поисковое), приёмы слушания.

– самому создавать источники информации разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности;

– уметь использовать компьютерные и коммуникационные технологии как инструмент для достижения своих целей. Уметь выбирать адекватные задаче инструментальные программно-аппаратные средства и сервисы.

Средством формирования познавательных УУД служат учебный материал и прежде всего продуктивные задания учебника, позволяющие продвигаться по всем шести линиям развития.

1-я ЛР – Использование математических знаний для решения различных математических задач и оценки полученных результатов.

2-я ЛР – Совокупность умений по использованию доказательной математической речи.

3-я ЛР – Совокупность умений по работе с информацией, в том числе и с различными математическими текстами.

4-я ЛР – Умения использовать математические средства для изучения и описания реальных процессов и явлений.

5-я ЛР – Независимость и критичность мышления.

6-я ЛР – Воля и настойчивость в достижении цели.

коммуникативные УУД:

– самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, договариваться друг с другом и т.д.);

– отстаивая свою точку зрения, приводить аргументы, подтверждая их фактами;

– в дискуссии уметь выдвинуть контраргументы;

– учиться критично относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;

– понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;

– уметь взглянуть на ситуацию с иной позиции и договариваться с людьми иных позиций.

Средством  формирования коммуникативных УУД служат технология проблемного диалога (побуждающий и подводящий диалог) и организация работы в малых группах, также использование на уроках элементов технологии продуктивного чтения.

предметные:

  1. овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, вектор, координаты) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
  2. умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;

  1. овладение навыками устных, письменных, инструментальных вычислений;
  2. овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
  3. усвоение систематических знаний о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
  4. умение вычислять объемы тел и площади их поверхностей, решая задачи повышенной сложности;
  5. умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

Вводное повторение курса планиметрии. Введение.

Основные понятия стереометрии (точка, прямая, плоскость, пространство) и аксиомы стереометрии. Первые следствия из аксиом.

Выпускник научится:

  • Понимать аксиомы о взаимном расположении точек, прямых и плоскостей в пространстве;
  • Применять аксиомы стереометрии их следствия при решении задач.

Выпускник получит возможность научиться:

  • Решать задачи повышенной сложности.

Параллельность прямых и плоскостей

Пересекающиеся, параллельные и скрещивающиеся прямые. Параллельность прямой и плоскости, признак и свойства. Угол между прямыми в пространстве. Перпендикулярность прямых. Параллельность плоскостей, признаки и свойства. Параллельное проектирование. Изображение пространственных фигур. Тетраэдр и параллелепипед, куб. Сечения куба, призмы, пирамиды.

Выпускник научится:

  • Определять взаимное расположение 2-х прямых в пространстве;
  • Доказывать теоремы о параллельности прямых параллельности 3-х прямых;
  • Закреплять эти понятия на моделях куба, призмы, пирамиды;
  • Вводить понятие параллельности прямой и плоскости;
  • Определять взаимное расположение прямой и плоскости в пространстве;
  • Применять изученные теоремы к решению задач;
  • Доказывать признак и свойства скрещивающихся прямых;
  • Находить углы между прямыми в пространстве;
  • Доказывать признак параллельности двух плоскостей;
  • Формулировать свойства параллельных плоскостей;
  • Применять изученные свойства параллельных плоскостей при решении задач;
  • Вводить понятие тетраэдра, параллелепипеда;
  • Решать задачи, связанные с тетраэдром и параллелепипедом;
  • Строить сечения тетраэдра и параллелепипеда.

Выпускник получит возможность научиться:

  • Доказывать признак параллельности прямой и плоскости;
  • Самостоятельно выбирать способ решения задач.

Перпендикулярность прямых и плоскостей

Перпендикулярность прямой и плоскости, признаки и свойства. Перпендикуляр и наклонная. Теорема о трех перпендикулярах. Угол между прямой и плоскостью. Расстояние от точки до плоскости. Расстояние от

прямой до плоскости. Расстояние между параллельными плоскостями. Расстояние между скрещивающимися прямыми. Перпендикулярность плоскостей, признаки и свойства. Двугранный угол, линейный угол двугранного угла. Площадь ортогональной проекции многоугольника.

Выпускник научится:

  • Вводить понятие перпендикулярных прямых в пространстве;
  • Доказывать лемму о перпендикулярности двух параллельных прямых к третьей прямой;
  • Давать определение перпендикулярности прямой и плоскости;
  • Доказывать признак перпендикулярности прямой и плоскости;
  • Применять признак перпендикулярности прямой и плоскости к решению задач;
  • Доказывать теорему существования и единственности прямой, перпендикулярной плоскости;
  • Решать задачи основных типов на перпендикулярность прямой и плоскости;
  • Доказывать теорему о трех перпендикулярах, применять теорему при решении задач;
  • Решать задачи в которых используется понятие угла между прямой и плоскостью;
  • Вводить понятие двугранного угла и его линейного угла, решать задачи на применение этих понятий;
  • Находить угол между плоскостями;
  • Вводить понятие перпендикулярных плоскостей;
  • Доказывать признак перпендикулярности двух плоскостей, применять этот признак при решении задач;
  • Вводить понятие прямоугольного параллелепипеда, формулировать свойства его граней, двугранных углов, диагоналей;
  • Решать задачи на свойства прямоугольного параллелепипеда.

Выпускник получит возможность научиться:

  • Доказывать теоремы, в которых устанавливается связь между параллельностью прямых и их перпендикулярностью к плоскости;
  • Совершенствовать навыки решения задач.

Многогранники

Понятие многогранника, вершины, ребра, грани многогранника. Развертка. Многогранные углы Выпуклые многогранники. Теорема Эйлера.

Призма, ее основание, боковые ребра, высота, боковая и полная поверхности.

Прямая и наклонная призма. Правильная призма. Пирамида, ее основание, боковые ребра, высота, боковая и полная поверхности. Треугольная пирамида. Правильная пирамида. Усеченная пирамида. Симметрия в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая и зеркальная). Примеры симметрий в окружающем мире. Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр).

Выпускник научится:

  • Вводить понятие многогранника, призмы и их элементов;
  • Определять виды призм, вводить понятие площади поверхности призмы;
  • Выводить формулу для вычисления площади поверхности прямой призмы;
  • Вводить понятие пирамиды, решать задачи связанные с пирамидой;
  • Вводить понятие правильной пирамиды;
  • Доказывать теорему о площади боковой поверхности правильной пирамиды;
  • Решать задачи, связанные с правильной пирамидой;
  • Вводить понятие «правильного многогранника»;
  • Решать задачи на правильные многогранники.

Выпускник получит возможность научиться:

  • Развивать творческие способности, познавательную активность;
  • Решать задачи на вычисление площади поверхности произвольной пирамиды.

Векторы в пространстве

Понятие вектора в пространстве. Модуль вектора. Равенство векторов. Сложение и вычитание векторов. Коллинеарные векторы. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение вектора по трем некомпланарным векторам.

Выпускник научится:

  • Вводить понятие вектора в пространстве и равенства векторов и связанные с этим понятием обозначения;
  • Понимать правила треугольника и параллелограмма сложения векторов в пространстве, законы сложения векторов;
  • Применять два способа построения разности двух векторов;
  • Применять правило сложения нескольких векторов в пространстве при нахождении векторных сумм, не прибегая к рисункам;
  • Применять правило умножения вектора на число и основные свойства этого действия при решении задач;
  • Давать определение компланарных векторов;
  • Применять признак компланарности трех векторов и правило параллелепипеда, сложение трех некомпланарных векторов;
  • Понимать теорему о разложении вектора по трем некомпланарным векторам.

Выпускник получит возможность научиться:

  • Совершенствовать навыки выполнения действий над векторами;
  • Решать задачи повышенной сложности.

Метод координат в пространстве. Движения

Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.

Выпускник научится:

  • Вводить понятие прямоугольной системы координат в пространстве;
  • Строить точку по заданным ее координатам и находить координаты точки, изображенной в заданной системе координат;
  • Выполнять действия над векторами с заданными координатами;
  • Вводить понятие радиус-вектора произвольной точки пространства;
  • Доказывать, что координаты точки равны соответствующим координатам ее радиус-вектора, а координаты любого вектора равны разностям соответствующих координат его конца и начала;
  • Применять формулы координат середины отрезка, длины вектора через его координаты и расстояния между двумя точками;
  • Вводить понятие угол между векторами и скалярного произведения векторов;
  • Применять формулу скалярного произведения в координатах и свойства скалярного произведения;
  • Вычислять скалярное произведение векторов и находить угол между векторами по их координатам;
  • Вводить понятия движения пространства и основные виды движений.

Выпускник получит возможность научиться:

  • Решать стереометрические задачи координатно-векторным способом;
  • Использовать скалярное произведение векторов при решении задач на вычисление углов между двумя прямыми, а также между прямой и плоскостью.

Цилиндр, конус, шар

Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Цилиндр и конус. Фигуры вращения.

Выпускник научится:

  • Вводить понятие цилиндрической поверхности, цилиндра и его элементов (боковая поверхность, основания, образующие, ось, высота, радиус);
  • Выводить формулы для вычисления площадей боковой и полной поверхности цилиндра;
  • Вводить понятие конической поверхности, конуса и его элементов (боковая поверхность, основание, вершина, образующие, ось, высота), усеченного конуса;
  • Выводить формулы для вычисления площадей боковой и полной поверхности конуса и усеченного конуса;
  • Решать задачи на нахождение элементов цилиндра и конуса;
  • Вводить понятие сферы, шара и их элементов (центр, радиус, диаметр);
  • Рассматривать возможные случаи взаимного расположения сферы и плоскости;
  • Применять формулу площади сферы при решении задач.

Выпускник получит возможность научиться:

  • Выводить уравнение сферы в заданной прямоугольной системе координат
  • Доказывать теоремы о касательной плоскости к сфере.

Объемы тел

Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Принцип Кавальери. Объем пирамиды. Объем конуса и усеченного конуса. Объем шара и его частей. Площадь поверхности многогранника, цилиндра, конуса, усеченного конуса. Площадь поверхности шара и его частей.

Выпускник научится:

  • Вводить понятие объема тела;
  • Применять свойства объемов, теорему об объеме прямоугольного параллелепипеда при решении задач;
  • Применять следствие об объеме прямой призмы, основанием которой является прямоугольный треугольник при решении задач;
  • Применять теоремы об объемах прямой призмы и цилиндра при решении задач;
  • Понимать возможность и целесообразность применения определенного интеграла для вычисления объемов тел;
  • Применять формулу объема наклонной призмы с помощью интеграла при решении задач;
  • Применять теорему об объеме пирамиды и, как следствие, формулу объема усеченной пирамиды при решении типовых задач;
  • Решать типовые задачи на применение формул объемов конуса и усеченного конуса;
  • Применять формулы объема шара и площади сферы при решении задач.

Выпускник получит возможность научиться:

  • Доказывать теоремы об объемах прямой призмы и цилиндра;
  • Выводить формулу объема наклонной призмы с помощью интеграла;
  • Выводить формулу объема усеченной пирамиды;
  • Доказывать теорему об объеме конуса и ее следствие, в котором выводится формула объема усеченного конуса;
  • Вывести формулы объема шара и площади сферы при решении задач;
  • Использовать формулы для вычисления объемов частей шара – шарового сегмента, шарового слоя и шарового сектора.

Предметные результаты освоения учебного предмета «Математика», отражающие НРЭО:

– формирование представлений о математике, её роли в жизни и профессиональной деятельности человека, необходимость применения математических знаний для решения современных практических задач человечества, своей страны и родного края, в том числе с учетом рынке труда Курской области;

– овладение основными навыками получения, применения, интерпретации и презентации информации математического содержания, использования математических знаний в повседневной жизни и изучения других предметов, формирование представлений о реальном секторе экономики и рынке труда Курской области;

– формирование представлений об особенностях деятельности людей, ведущей к развитию промышленности родного края, освоение системы математических знаний для последующего изучения дисциплин необходимых для получения инженерных и технических специальностей в учреждениях системы среднего и высшего профессионального образования и для самообразования.

Автором выделены требования к личностным результатам, группа метапредметных

результатов, основанных на регулятивных универсальных учебных действиях (УУД), группа метапредметных результатов, основанных на познавательных УУД и группа метапредметных результатов, основанных на коммуникативных УУД, развитие которых обеспечивается использованием учебника и других компонентов УМК по геометрии для 10 – 11 классов.

Требования к результатам обучения и освоению содержания курса

Изучение математики в средней  школе дает возможность обучающимся достичь следующих результатов развития:

в личностном направлении:

  • сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
  • представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
  • креативность мышления, инициатива, находчивость, активность при решении математических задач;
  • умение контролировать процесс и результат учебной математической деятельности;
  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

   в метапредметном направлении:

  • представления об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
  • умение находить в различных источниках информацию, необходимую для решения математических проблем, представлять ее в понятной форме, принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
  • умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;
  • умение выдвигать гипотезы при решении учебных задач, понимать необходимость их проверки;
  • умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
  • сформированность учебной  и общепользовательской           компетентности в области использования информационно-коммуникационных технологий;

в предметном направлении:

сформированность представлений о математике как части мировой культуры и о месте математики в современной цивилизации, о способах описания на математическом языке явлений реального мира;

  1. сформированность представлений о математических понятиях как о важнейших математических моделях, позволяющих описывать и изучать разные процессы и явления; понимание возможности аксиоматического построения математических теорий;
  2. владение методами доказательств и алгоритмов решения; умение их применять, проводить доказательные рассуждения в ходе решения задач;
  3. владение стандартными приёмами решения рациональных и иррациональных, показательных, степенных, тригонометрических уравнений и неравенств, их систем; использование готовых компьютерных программ, в том числе для поиска пути решения и иллюстрации решения уравнений и неравенств;
  4. сформированность представлений об основных понятиях, идеях и методах математического анализа;
  5. владение основными понятиями о плоских и пространственных геометрических фигурах, их основных свойствах; сформированность умения распознавать на чертежах, моделях и в реальном мире геометрические фигуры; применение изученных свойств геометрических фигур и формул для решения геометрических задач и задач с практическим содержанием;
  6. сформированность представлений о процессах и явлениях, имеющих вероятностный характер, о статистических закономерностях в реальном мире, об основных понятиях элементарной теории вероятностей; умений находить и оценивать вероятности наступления событий в простейших практических ситуациях и основные характеристики случайных величин;
  7. владение навыками использования готовых компьютерных программ при решении задач.

В рамках учебного предмета «Геометрия» традиционно изучаются евклидова геометрия, элементы векторной алгебры, геометрические преобразования.

Контрольные работы направлены на проверку уровня базовой подготовки учащихся, а также на дифференцированную проверку владения формально-оперативным математическим аппаратом, способность к интеграции знаний по основным темам курса.  

Промежуточный контроль знаний осуществляется с помощью проверочных самостоятельных работ,  практических работ.

Тематическое и поурочное планирование составлено на основе программы министерства образования РФ по геометрии: авторы Атанасян Л.С., В. Ф. Бутузов, С. Б. Кадомцев и др. (Составитель сборника программ: Т. А .Бурмистрова. «Просвещение», 2008 г.) и в соответствии с  учебником «Геометрия, 10-11», авторы Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др., - М.: Просвещение, 2010

СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

10 класс (2 ч в неделю, всего 68 ч)

1. Введение (аксиомы стереометрии и их следствия). (5ч).

  • Представление раздела геометрии – стереометрии. Основные понятия стереометрии. Аксиомы стереометрии и их следствия. Многогранники: куб, параллелепипед, прямоугольный параллелепипед, призма, прямая призма, правильная призма, пирамида, правильная пирамида. Моделирование многогранников из разверток и с помощью геометрического конструктора.
  • Цель: ознакомить учащихся с основными свойствами и способами задания плоскости на базе групп аксиом стереометрии и их следствий.
  • О с н о в н а я ц е л ь – сформировать представления учащихся об основных понятиях и аксиомах стереометрии, познакомить с основными пространственными фигурами и моделированием многогранников.
  • Особенностью учебника является раннее введение основных пространственных фигур, в том числе, многогранников. Даются несколько способов изготовления моделей многогранников из разверток и геометрического конструктора. Моделирование многогранников служит важным фактором развития пространственных представлений учащихся.

2. Параллельность прямых и плоскостей. (20 ч).

  • Пересекающиеся, параллельные и скрещивающиеся прямые в пространстве. Классификация взаимного расположения двух прямых в пространстве. Признак скрещивающихся прямых. Параллельность прямой и плоскости в пространстве. Классификация взаимного расположения прямой и плоскости. Признак параллельности прямой и плоскости. Параллельность двух плоскостей. Классификация взаимного расположения двух плоскостей. Признак параллельности двух плоскостей. Признаки параллельности двух прямых в пространстве.
  • Цель: дать учащимся систематические знания о параллельности прямых и плоскостей в пространстве.
  • О с н о в н а я ц е л ь – сформировать представления учащихся о понятии параллельности и о взаимном расположении прямых и плоскостей в пространстве, систематически изучить свойства параллельных прямых и плоскостей, познакомить с понятиями вектора, параллельного переноса, параллельного проектирования и научить изображать пространственные фигуры на плоскости в параллельной проекции.
  • В данной теме обобщаются известные из планиметрии сведения о параллельных прямых. Большую помощь при иллюстрации свойств параллельности и при решении задач могут оказать модели многогранников.
  • Здесь же учащиеся знакомятся с методом изображения пространственных фигур, основанном на параллельном проектировании, получают необходимые практические навыки по изображению пространственных фигур на плоскости. Для углубленного изучения могут служить задачи на построение сечений многогранников плоскостью.

3. Перпендикулярность прямых и плоскостей. (20ч).

  • Угол между прямыми в пространстве. Перпендикулярность прямых. Перпендикулярность прямой и плоскости. Признак перпендикулярности прямой и плоскости. Ортогональное проектирование. Перпендикуляр и наклонная. Угол между прямой и плоскостью. Двугранный угол. Линейный угол двугранного угла. Перпендикулярность плоскостей. Признак перпендикулярности двух плоскостей. Расстояние между точками, прямыми и плоскостями.
  • Цель: дать учащимся систематические знания о перпендикулярности прямых и плоскостей в пространстве; ввести понятие углов между прямыми и плоскостями.
  • О с н о в н а я ц е л ь – сформировать представления учащихся о понятиях перпендикулярности прямых и плоскостей в пространстве, систематически изучить свойства перпендикулярных прямых и плоскостей, познакомить с понятием центрального проектирования и научить изображать пространственные фигуры на плоскости в центральной проекции.
  • В данной теме обобщаются известные из планиметрии сведения о перпендикулярных прямых. Большую помощь при иллюстрации свойств перпендикулярности и при решении задач могут оказать модели многогранников.
  • В качестве дополнительного материала учащиеся знакомятся с методом изображения пространственных фигур, основанном на центральном проектировании. Они узнают, что центральное проектирование используется не только в геометрии, но и в живописи, фотографии и т.д., что восприятие человеком окружающих предметов посредством зрения осуществляется по законам центрального проектирования. Учащиеся получают необходимые практические навыки по изображению пространственных фигур на плоскости в центральной проекции.

4. Многогранники (13 ч).

  • Многогранные углы. Выпуклые многогранники и их свойства. Правильные многогранники.
  • Цель: сформировать у учащихся представление об основных видах многогранников и их свойствах; рассмотреть правильные многогранники.
  • О с н о в н а я ц е л ь – познакомить учащихся с понятиями многогранного угла и выпуклого многогранника, рассмотреть теорему Эйлера и ее приложения к решению задач, сформировать представления о правильных, полуправильных и звездчатых многогранниках, показать проявления многогранников в природе в виде кристаллов.
  • Среди пространственных фигур особое значение имеют выпуклые фигуры и, в частности, выпуклые многогранники. Теорема Эйлера о числе вершин, ребер и граней выпуклого многогранника играет важную роль в различных областях математики и ее приложениях. При изучении правильных, полуправильных и звездчатых многогранников следует использовать модели этих многогранников, изготовление которых описано в учебнике, а также графические компьютерные средства.

5. Векторы в пространстве-7 часов.

Векторы в пространстве. Коллинеарные и компланарные векторы. Параллельный перенос. Параллельное проектирование и его свойства. Параллельные проекции плоских фигур. Изображение пространственных фигур на плоскости. Сечения многогранников. Исторические сведения.

О с н о в н а я ц е л ь: сформировать у учащихся понятие вектора в пространстве; рассмотреть основные операции над векторами.

Повторение курса геометрии за 10 класс (3часа)

Цель: повторение и систематизация материала 10 класса.

Цели: повторить и обобщить знания и умения, учащихся через решение задач по следующим темам: параллельность прямых, параллельность прямой и плоскости, параллельность плоскостей; перпендикулярность прямых и плоскостей , многогранники .

СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

11 класс (2ч в неделю, всего 66 ч.)

  • Координаты точки и координаты векторов пространстве. Движения (20ч).

Прямоугольная система координат в пространстве. Расстояние между точками в пространстве. Векторы в пространстве. Длина вектора. Равенство векторов. Сложение векторов. Умножение вектора на число. Координаты вектора. Скалярное произведение векторов.

Цель: введение понятие прямоугольной системы координат в пространстве; знакомство с координатно-векторным методом решения задач.

Цели: сформировать у учащихся умения применять координатный и векторный методы к решению задач на нахождение длин отрезков и углов между прямыми и векторами в пространстве. В ходе изучения темы целесообразно использовать аналогию между рассматриваемыми понятиями на плоскости и в пространстве. Это поможет учащимся более глубоко и осознанно усвоить изучаемый материал, уяснить содержание и место векторного и координатного методов в курсе геометрии

О с н о в н а я ц е л ь – обобщить и систематизировать представления учащихся о декартовых координатах и векторах, познакомить с полярными и сферическими координатами.

Изучение координат и векторов в пространстве, с одной стороны, во многом повторяет изучение соответствующих тем планиметрии, а с другой стороны, дает алгебраический метод решения стереометрических задач.

2.Цилиндр, конус, шар (16 ч.)

Основные элементы сферы и шара. Взаимное расположение сферы и плоскости. Многогранники, вписанные в сферу. Многогранники, описанные около сферы. Цилиндр и конус. Фигуры вращения.

Цель: выработка у учащихся систематических сведений об основных видах тел вращения.

Цели: дать учащимся систематические сведения об основных видах тел вращения. Изучение круглых тел (цилиндра, конуса, шара) завершает изучение системы основных пространственных геометрических тел. В ходе знакомства с теоретическим материалом темы значительно развиваются пространственные представления учащихся: круглые тела рассматривать на примере конкретных геометрических тел, изучать взаимное расположение круглых тел и плоскостей (касательные и секущие плоскости), ознакомить с понятиями описанных и вписанных призм и пирамид. Решать большое количество задач, что позволяет продолжить работу по формированию логических и графических умений.

О с н о в н а я ц е л ь – сформировать представления учащихся о круглых телах, изучить случаи их взаимного расположения, научить изображать вписанные и описанные фигуры.

В данной теме обобщаются сведения из планиметрии об окружности и круге, о взаимном расположении прямой и окружности, о вписанных и описанных окружностях. Здесь учащиеся знакомятся с основными фигурами вращения, выясняют их свойства, учатся их изображать и решать задачи на фигуры вращения. Формированию более глубоких представлений учащихся могут служить задачи на комбинации многогранников и фигур вращения.

3. Объем и площадь поверхности (24 ч).

Понятие объема и его свойства. Объем цилиндра, прямоугольного параллелепипеда и призмы. Принцип Кавальери. Объем пирамиды. Объем конуса и усеченного конуса. Объем шара и его частей. Площадь поверхности многогранника, цилиндра, конуса, усеченного конуса. Площадь поверхности шара и его частей.

Цель: систематизация изучения многогранников и тел вращения в ходе решения задач на вычисление их объемов.

Цели: продолжить систематическое изучение многогранников и тел вращения в ходе решения задач на вычисление их объемов.

Понятие объема вводить по аналогии с понятием площади плоской фигуры и формулировать основные свойства объемов.

Существование и единственность объема тела в школьном курсе математики приходится принимать без доказательства,

так как вопрос об объемах принадлежит, по существу, к трудным разделам высшей математики. Поэтому нужные результаты устанавливать, руководствуясь больше наглядными соображениями. Учебный материал главы в основном должен усвоиться в процессе решения задач.

О с н о в н а я ц е л ь – сформировать представления учащихся о понятиях объема и площади поверхности, вывести формулы объемов и площадей поверхностей основных пространственных фигур, научить решать задачи на нахождение объемов и площадей поверхностей.

Изучение объемов обобщает и систематизирует материал планиметрии о площадях плоских фигур. При выводе формул объемов используется принцип Кавальери. Это позволяет чисто геометрическими методами, без использования интеграла или предельного перехода, найти объемы основных пространственных фигур, включая объем шара и его частей.

Практическая направленность этой темы определяется большим количеством разнообразных задач на вычисление объемов и площадей поверхностей.

  • Повторение (6 ч.)

Цель: повторение и систематизация материала 11 класса.

Цели: повторить и обобщить знания и умения, учащихся через решение задач по следующим темам: метод координат в пространстве; многогранники; тела вращения; объёмы многогранников и тел вращения

        

Тематическое планирование

10 класс

Раздел программы

Количество

часов

Количество контрольных работ

по разделу

1

Введение

5

1 ( 20 мин )

2

Параллельность прямых и плоскостей.

20

2

3

Перпендикулярность прямых и плоскостей.

20

1

4

Многогранники

13

1

5

Векторы в пространстве

7

1

Повторение курса геометрии за 10 класс

3

итого

68

11 класс

Раздел программы

Количество

часов

Количество контрольных работ

по разделу

1

Метод координат в пространстве

20

2

2

Цилиндр. Конус. Шар.

16

1

3

Объемы тел

24

2

4

Повторение

6

Итого:

66


По теме: методические разработки, презентации и конспекты

Рабочая программа по геометрии -9 УМК Атанасян Л.С.

Рабочая программа по геометрии для обучающихся 9   класса составлена на основе федерального государственного образовательного стандарта основного общего образования с учетом примерной ...

Рабочая программа по геометрии 9 класс Атанасян

Содержит посянительную записку к рабочей программе по геометрии 9 класс  к учебнику Атанасяна и календарно-тематическое планирование....

Рабочая программа по геометрии. 8 класс.Атанасян

Рабочая программа по геометрии.8 класс.Атанасян...

Рабочая программа по геометрии.7 класс.Атанасян

Рабочая программа по геометрии в 7 классе.Атанасян...

Рабочая программа по геометрии 8 класс Атанасян

Рабочая программа и планирование по учебнику Атанасяна Геометрия 8 класс...

Рабочая программа по геометрии 7-9 Атанасян Л.С.

Настоящая программа по геометрии  для  7 - 9  классов образовательной школы создана на основе нормативных документов:·        Стандарт среднего ...

Рабочая программа по геометрии, 7 кл, Атанасян

Рабочая программа по геометрии, 7 класс, учебник - Атанасян Л.С....