Рабочая программа Геометрия 8 класс
рабочая программа по геометрии (8 класс)

Имехенова Людмила Юрьевна

Геометрия. 7-9 класс Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. 2010

Скачать:

ВложениеРазмер
Файл Рабочая программа геометрия 8 кл47.68 КБ

Предварительный просмотр:

Министерство образования и науки Республики Бурятия

Администрация г. Улан-Удэ

Комитет по образованию

МАОУ «Средняя общеобразовательная школа № 25

Рассмотрено на заседании МО _____________________

Протокол № ___

«_____»______20___

_____________________

СОГЛАСОВАНО:

заместитель директора по УВР

_________________

«_____»______20__

УТВЕРЖДАЮ:

директор школы

__________________

«_____»______20___

Р А Б О Ч А Я  П Р О Г Р А М М А

Курс    геометрия

Уровень обучения    базовый         год обучения      2

                             для учащихся   8 класса

УМК     Л.С.Атанасян

Составитель    Имехенова Л.Ю. -  учитель математики        

Год разработки программы    2014 г.

г. Улан-Удэ

Пояснительная записка.

               Рабочая программа по геометрии разработана на основании следующих нормативно- правовых документов:

  • Обязательный минимум содержания основного общего образования по математике (приложение к Приказу Минобразования России «Об утверждении временных требований к обязательному минимуму содержания основного общего образования» от 19.05.1998 г. №1236);
  • Федеральный компонент государственного стандарта общего образования. Математика (Приказ Минобразования России «Об утверждении федерального компонента государственных стандартов начального общего, основного общего и среднего (полного) общего образования» от 05.03.2004 г. №1089).
  • Федеральный  образовательный стандарт
  • С учетом требований  профессионального Стандарта педагога

Цели изучения геометрии

       Основные цели курса геометрии :

  • овладение системой математических знаний и умений, необходимых в практической
  • деятельности, продолжения образования;
  • приобретение опыта планирования и осуществления алгоритмической деятельности;
  • освоение навыков и умений проведения доказательств, обоснования выбора решений;
  • приобретение умений ясного и точного изложения мыслей;
  • развить пространственные представления и умения, помочь освоить основные факты и методы

планиметрии;

  • научить пользоваться геометрическим языком для описания предметов.

Основные цели курса геометрии 8 класса:

  •  изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; рассмотреть теорему Фалеса; дать представление о фигурах, обладающих осевой или центральной симметрией.
  • расширить и углубить полученные в 5—6 классах представления учащихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.
  •  ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.
  •  расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить учащихся с четырьмя замечательными точками треугольник.

Основные развивающие и воспитательные цели

Развитие:

  • Ясности и точности мысли, критичности мышления, интуиции, логического мышления, элементов алгоритмической культуры, пространственных представлений, способности к преодолению трудностей;
  • Математической речи;
  • Сенсорной сферы; двигательной моторики;
  • Внимания; памяти;
  • Навыков само и взаимопроверки.
  • Формирование представлений об идеях и методах математики как универсального языка науки и техники, средства моделирования явлений и процессов.

     Воспитание:

  • Культуры личности, отношения к математике как к части общечеловеческой культуры, понимание значимости математики для научно-технического прогресса;
  • Волевых качеств;
  • Коммуникабельности;
  • Ответственности.

Данная программа составлена из расчета 2 часа в неделю, всего 68 часов в год.

Общая характеристика предмета.

     Геометрия – один из важнейших компонентов математического образования, необходимый для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Таким образом, в ходе освоения содержания курса учащиеся получают возможность развить пространственные представления и изобразительные умения, освоить основные факты и методы планиметрии, познакомиться с простейшими фигурами и их свойствами.

Основные технологии

   С целью обеспечения эффективности   и результативности учебного процесса используются  различные технологии обучения.

    Главной задачей использования новых  технологий является расширение интеллектуальных возможностей человека. Все используемые технологии направлены на сохранение физического, психического и нравственного здоровья каждого ученика.

На уроках используются элементы следующих технологий:  

Проблемное обучение

   Создание в учебной деятельности проблемных ситуаций и организация активной самостоятельной деятельности учащихся по их разрешению, в результате чего происходит творческое овладение знаниями, умениями, навыками, развиваются мыслительные спсобности. 

Индивидуально-развивающее обучение  

   Знакомство с новыми методами мыслительной деятельности при решении творческих заданий с чертежами, технологическими картами в индивидуальном порядке 

Разноуровневое  обучение

  У учителя появляется возможность помогать слабому,  уделять внимание сильному, реализуется  желание сильных учащихся быстрее и глубже продвигаться в образовании. Сильные учащиеся утверждаются в своих способностях, слабые получают возможность испытывать учебный успех, повышается уровень мотивации учения.
Технология проектного обучения

   Учитель организует учебно-познавательную, исследовательскую, творческую или игровую деятельность обучающихся, которые овладевают навыками самостоятельного поиска,  обработки и анализа  нужной  информации для  решения какой-либо проблемы, значимой для участников проекта.

   Работа с использованием этой технологии  дает возможность развивать индивидуальные творческие способности учащихся, более осознанно подходить к профессиональному и социальному самоопределению. 

Технология игровых методов: ролевых, деловых и других видов игр  
   Расширение кругозора, развитие познавательной деятельности, формирование определенных умений и навыков, необходимых в практической деятельности, развитие общеучебных умений и навыков. 

Тестовые технологии 

   Оценка уровня обученности  по конкретной теме, позволяющая реально оценить готовность обучающихся к итоговому контролю, установление количественных и качественных индивидуальных различий.

Обучение в сотрудничестве (командная, групповая работа)
   Сотрудничество трактуется как идея совместной развивающей деятельности взрослых и детей. Суть индивидуального подхода в том, чтобы идти не от учебного предмета, а от ребенка к предмету, идти от тех возможностей, которыми располагает ребенок, применять психолого-педагогические диагностики личности. Обучающиеся и учитель занимаются совместной деятельностью. Эффективность метода не только в академических успехах обучающихся, но и в их интеллектуальном и нравственном развитии. 
Информационно-коммуникационные технологии

   Использование ПК в учебном процессе. Создание рефератов, слайдов, презентаций и др. Поиск нужной информации в Интернет. Применение полученных знаний в практической деятельности.


Здоровье сберегающие технологии
   Использование данных технологий позволяют равномерно во время урока распределять различные виды заданий, чередовать мыслительную деятельность с физминутками, определять время подачи сложного учебного материала, выделять время на проведение самостоятельных работ, нормативно применять ТСО. 

Основные типы учебных занятий:    

  • урок изучения нового учебного материала;
  • урок закрепления и  применения знаний;
  • урок обобщающего повторения и систематизации знаний;
  • урок контроля знаний и умений.

Основным типом урока является комбинированный.

         Формы организации учебного процесса:                                                                       индивидуальные, групповые, индивидуально-групповые, фронтальные.

На уроках используются такие формы занятий как:

  • практические занятия;
  • тренинг;
  • консультация;
  • групповая работа;
  • проектная деятельность

         Формы контроля: текущий и итоговый. Проводится в форме контрольных работ, рассчитанных на 40 минут, самостоятельных работ на 15 – 20 минут с дифференцированным оцениванием , зачетных работ (устных и письменных),  итоговых тестов , рассчитанных на 120 минут.

Текущий контроль проводится с целью проверки усвоения изучаемого и проверяемого программного материала;  содержание  определяются учителем с учетом степени сложности изучаемого материала, а также особенностей обучающихся  класса. Итоговые контрольные работы проводятся:    

-  после изучения наиболее значимых тем программы,  

зачетные работы-

-после прохождения  программной главы;

    итоговые тесты

-в конце учебной четверти и года.

Содержание обучения.

Четырёхугольники –

Многоугольники

Параллелограмм и трапеция

Прямоугольник, ромб, квадрат

Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная трапеция.

Площадь –

Площадь многоугольника

Площади параллелограмма, прямоугольника и трапеции

Теорема  Пифагора

Площадь прямоугольника. Площадь параллелограмма, треугольника и трапеции (основные формулы). Формулы, выражающие площадь треугольника: через две стороны и угол между ними. Теорема Пифагора. Признаки равенства прямоугольных треугольников.

Подобные треугольники –

Определение подобных треугольников

Признаки подобия треугольников

Применение подобия к доказательству теорем и решению задач

Соотношения между сторонами и углами прямоугольного треугольника

Подобие треугольников; коэффициент подобия. Признаки подобия треугольников. Связь между площадями подобных фигур. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника.

Окружность

Касательная к окружности

Центральные и вписанные углы

Четыре замечательные точки треугольника

Вписанная и описанная окружности

Центр, радиус, диаметр. Дуга, хорда.  Центральный, вписанный угол; величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд.

Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники.

Повторение. Решение задач –

Закрепление знаний, умений и навыков

Требования к подготовке учащихся

В результате изучения  курса геометрии  8 класса  учащиеся должны знать:

  • значение  геометрической науки для решения задач, возникающих в теории и практике; широту и в то же время ограниченность применения математических методов к анализу и исследованию процессов и явлений в природе и обществе;
  • значение практики вопросов, возникающих в самой математике для формирования и развития математической науки; историю развития понятия числа, создания математического анализа, возникновения и развития геометрии;
  • универсальный характер законов логики математических рассуждений, их применимость во всех областях человеческой деятельности; вероятностных характер различных процессов окружающего мира;

Учащиеся должны уметь:

  • пользоваться геометрическим языком для описания предметов окружающего мира;
  • распознавать геометрические фигуры, различать их взаимное расположение;
  • изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразование фигур;
  • вычислять значения геометрических величин (длин, углов, площадей), в том числе: определять значение тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них; находить стороны, углы и площади треугольников, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
  • решать геометрические задания, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, соображения симметрии;
  • проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
  • решать простейшие планиметрические задачи в пространстве;
  • применять свойства геометрических фигур как опору при решении задач;
  • решать задачу введения терминологии, развития навыков изображения планиметрических фигур и простейших геометрических конфигураций, связанных с условиями решаемых задач;
  • решать задачи на многогранники в курсе стереометрии;
  • уметь применять метод подобия треугольников при решении задач;
  • решать задачи на построение вписанных и описанных окружностей с помощью циркуля

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни        для:

  •        описания реальных ситуаций на языке геометрии; расчетов, включающих простейшие тригонометрические формулы;
  •         решения геометрических задач с использованием тригонометрии;
  •         решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства);
  •       Построения  геометрическими инструментами (линейка, угольник, циркуль, транспортир)

Результаты освоения содержания курса

  • Программа позволяет добиваться следующих результатов освоения образовательной программы основного общего образования:
  • личностные:
  • ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;
  • формирования коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, учебно-исследовательской, творческой и других видах деятельности;
  • умения ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
  • первоначального представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
  • критичности мышления, умения распознавать логически некорректные высказывания, отличать гипотезу от факта;
  • креативности мышления, инициативы, находчивости, активности при решении арифметических задач;
  • умения контролировать процесс и результат учебной математической деятельности;
  • формирования способности к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
  • метапредметные:
  • способности самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
  • умения осуществлять контроль по образцу и вносить необходимые коррективы;
  • способности адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
  • умения устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
  • умения создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
  • развития способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
  • формирования учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентностй);
  • первоначального представления об идеях и о методах математики как об универсальном языке науки и техники;
  • развития способности видеть математическую задачу в других дисциплинах, в окружающей жизни;
  • умения находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
  • умения понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
  • умения выдвигать гипотезы при решении учебных задач и понимания необходимости их проверки;
  • понимания сущности алгоритмических предписаний и умения действовать в соответствии с предложенным алгоритмом;
  • умения самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
  • способности планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

                      предметные:

  • умения пользоваться языком геометрии для описания предметов окружающего мира;
  • уменияраспознавать геометрические фигуры, различать их взаимное расположение;
  • умения изображать геометрические фигуры; выполнять чертежи по условию задач; осуществлять преобразования фигур;
  • умения распознавать на чертежах, моделях и в окружающей обстановке основные пространственные тела, изображать их;
  • умения в простейших случаях строить сечения и развертки пространственных тел;
  • умения проводить операции над векторами, вычислять длину и координаты вектора, угол между векторами;
  • умения вычислять значения геометрических величин (длин, углов, площадей, объемов), определять значения тригонометрических функций по заданным значениям углов; находить значения тригонометрических функций по значению одной из них, находить стороны, углы и площади треугольников, длины ломаных, дуг окружности, площадей основных геометрических фигур и фигур, составленных из них;
  • умения решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический и тригонометрический аппарат, идеи симметрии;
  • умения проводить доказательные рассуждения при решении задач, используя известные теоремы, обнаруживая возможности для их использования;
  • умения решать простейшие планиметрические задачи в пространстве;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

  • умения описания реальных ситуаций на языке геометрии;
  • умения расчетов, включающих простейшие тригонометрические формулы;
  • умения решения геометрических задач с использованием тригонометрии
  • умения решения практических задач, связанных с нахождением геометрических величин (используя при необходимости справочники и технические средства); построений геометрическими инструментами (линейка, угольник, циркуль, транспортир).

Организация контроля хода усвоения учащимися учебного материала

     Требования к контролю распределены по основным содержательным линиям курса и задаются на двух уровнях  (повышенный, базовый). Первый фиксирует те возможности, которые обязана предоставить учащимся школа. Он характеризует результаты, к которым стремится и при желании достигает учащийся, заинтересованный в данном курсе. Второй – уровень обязательной подготовки. Он характеризует  тот безусловный минимум, которого должны достигать все учащиеся. В соответствии с логикой структуры учебного процесса должна осуществляться проверка.

       Виды контроля:

- текущий (индивидуальный, групповой, фронтальный)

-самостоятельные работы (обучающие, проверочные) по каждой теме

-контрольные работы по темам  ( всего 4  контрольные  работы в год)

-контрольное тестирование в конце каждой четверти

-итоговое тестирование по прохождении программы   курса 8 класса

Перечень учебно-методического обеспечения

  1. Геометрия 7-9 класс / Л. С. Атанасян. М: Просвещение, 2007 год
  2. Программа общеобразовательных учреждений. Геометрия 7-9 классы: М: : Просвещение, 2009 год
  3. Н. Ф. Гаврилова Поурочные разработки по геометрии 8 класс, Москва, «ВАКО», 2005 год
  4. А. П. Ершова, В. В. Голобородько, А. С. Ершова «Самостоятельные и контрольные работы по алгебре и геометрии для 8 класса». Разноуровневые дидактические материалы. М: Илекса, 2002 год.
  5. Б. Г. Зив, В. М. Мейлер «Дидактические материалы по геометрии», Москва, «Просвещение», 1998 год

6. Геометрия 7-9 класс / Л. С. Атанасян. М: «Просвещение», 2007 год


Тема

Кол-во часов

Основные понятия, термины, формулы

Виды деятельности

всего

к/р

Практ

коммуникативная

регулятивная

познавательная

предметная

Четырехугольники  

16 час.

Многоугольник. Выпуклый многоугольник

Четырехугольник

Параллелограмм

Признаки параллелограмма

Трапеция

Прямоугольник

Ромб и квадрат

учащиеся научатся:

1) организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;

2) взаимодействовать и находить общие способы работы; работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;

3) прогнозировать возникновение конфликтов при наличии разных точек зрения;

4) разрешать конфликты на основе учёта интересов и позиций всех участников;

5) координировать и принимать различные позиции во взаимодействии;

6) аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности.

учащиеся научатся:

1) формулировать и удерживать учебную задачу;

2) выбирать действия в соответствии с поставленной задачей и условиями её реализации;

3) планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;

4) предвидеть уровень усвоения знаний, его временных характеристик;

5) составлять план и последовательность действий;

6) осуществлять контроль по образцу и вносить необходимые коррективы;

7) адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;

8) сличать способ действия и его результат с заданным эталоном с целью обнаружения отклонений и отличий от эталона;

учащиеся получат возможность научиться:

1) определять последовательность промежуточных целей и соответствующих им действий с учётом конечного результата;

2) предвидеть возможности получения конкретного результата при решении задач;

3) осуществлять констатирующий и прогнозирующий контроль по результату и по способу действия;

4) выделять и формулировать то, что усвоено и что нужно усвоить, определять качество и уровень усвоения;

5) концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий;

учащиеся научатся:

1) самостоятельно выделять и формулировать познавательную цель;

2) использовать общие приёмы решения задач;

3) применять правила и пользоваться инструкциями и освоенными закономерностями;

4) осуществлять смысловое чтение;

5) создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения задач;

6) самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

7) понимать сущность алгоритмических предписаний и уметь действовать в соответствии с предложенным алгоритмом;

8) понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

9) находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

учащиеся получат возможность научиться:

1) устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

2) формировать учебную и общепользовательскую компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

3) видеть математическую задачу в других дисциплинах, в окружающей жизни;

4) выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

5) планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

6) выбирать наиболее рациональные и эффективные способы решения задач;

7) интерпретировать информации (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);

8) оценивать информацию (критическая оценка, оценка достоверности);

9) устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения;

учащиеся научатся:

1) самостоятельно выделять и формулировать познавательную цель;

2) использовать общие приёмы решения задач;

3) применять правила и пользоваться инструкциями и освоенными закономерностями;

4) осуществлять смысловое чтение;

5) создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения задач;

6) самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

7) понимать сущность алгоритмических предписаний и уметь действовать в соответствии с предложенным алгоритмом;

8) понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;

9) находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

учащиеся получат возможность научиться:

1) устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;

2) формировать учебную и общепользовательскую компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);

3) видеть математическую задачу в других дисциплинах, в окружающей жизни;

4) выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

5) планировать и осуществлять деятельность, направленную на решение рациональные и эффективные способы решения задач;

7) интерпретировать информации (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);

8) оценивать информацию (критическая оценка, оценка достоверности);

9) устанавливать причинно-следственные связи, выстраивать рассуждения, обобщения;

задач исследовательского характера;

учащиеся научатся:

1) работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику, использовать различные языки математики (словесный, символический, графический), обосновывать суждения, проводить классификацию;

2) владеть базовым понятийным аппаратом: иметь представление о числе, дроби, об основных геометрических объектах (точка, прямая, ломаная, угол, многоугольник, многогранник, круг, окружность);

3) выполнять арифметические преобразования, применять их для решения учебных математических задач;

4) пользоваться изученными математическими формулами;

5) самостоятельно приобретать и применять знания в различных ситуациях для решения несложных практических задач, в том числе с использованием при необходимости справочных материалов, калькулятора и компьютера;

6) пользоваться предметным указателем энциклопедий и справочников для нахождения информации;

7) знать основные способы представления и анализа статистических данных; уметь решать задачи с помощью перебора возможных вариантов;

учащиеся получат возможность научиться:

1) выполнять арифметические преобразования выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

2) применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов;

3) самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем, а также самостоятельно интерпретировать результаты решения задач с учетом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Площадь

22 часа

Понятие площади многоугольника

Площадь квадрата

Площадь прямоугольника

Площадь параллелограмма

Контрольная работа

Площадь треугольника

Площадь трапеции

Контрольная работа

Теорема Пифагора

Теорема  обратная теореме Пифагора

Подобные треугольники

10 час.

Определение подобных треугольников

Отношение площадей подобных треугольников

Признаки подобия треугольников

Средняя линия треугольника

Пропорциональные отрезки

Синус, косинус, тангенс острого угла

Окружность

12 час.

1

Взаимное расположение прямой и окружности

Касательная к окружности

Центральные и вписанные углы

Четыре замечательные точки треугольника

Вписанная и описанная окружности

Итоговое повторение

8 часов


Календарно-тематическое планирование

Название темы

Кол-во часов

Дата

Примечания

Четырехугольники

16 часов

1

Многоугольник. Выпуклый многоугольник

2

Четырехугольник

3

Параллелограмм

4

Признаки параллелограмма

5

Трапеция

6

Решение задач

7

Прямоугольник

8

Ромб и квадрат

9

Контрольная работа №1

Площадь

22 часа

1

Понятие площади многоугольника

2

Площадь квадрата

3

Площадь прямоугольника

4

Площадь параллелограмма

5

Решение задач

6

Контрольная работа №2

7

Площадь треугольника

8

Площадь трапеции

9

Решение задач

10

Контрольная работа №3

11

Теорема Пифагора

12

Теорема обратная теореме Пифагора

13

Решение задач

14

Контрольная работа №4

Подобные треугольники

10 часов

1

 Пропорциональные отрезки. Определение подобных треугольников

2

Отношение площадей подобных треугольников

3

Признаки подобия треугольников

4

Средняя линия треугольника

5

Пропорциональные отрезки в прямоугольном треугольнике

6

Синус, косинус, тангенс острого угла прямоугольного треугольника

7

Решение задач

8

Контрольная работа №5

Окружность

12 часов

1

Взаимное расположение прямой и окружности

2

Касательная к окружности

3

Центральные и вписанные углы

4

Четыре замечательные точки треугольника

5

Вписанная и описанная окружности

6

Решение задач

7

Контрольная работа

Повторение

8 часов


По теме: методические разработки, презентации и конспекты

Рабочая программа. Геометрия. 9 класс.

Уровень базовый, 2 часа в неделю...

Рабочая программа геометрия 7 класс (Погорелов)

Статус документа. Данная рабочая программа по курсу «Геометрия. 7 класс» разработана в на основе федерального компонента государственного образовательного стандарта основного общего образования,...

Рабочая программа геометрия 8 класс (Погорелов)

Статус документа. Данная рабочая программа по курсу «Геометрия. 8 класс» разработана в на основе федерального компонента государственного образовательного стандарта основного общего образования,...

РАБОЧАЯ ПРОГРАММА Геометрия 9 КЛАСС

Рабочая программа по геометрии в 9 классе составлена на основе федерального компонента государственного стандарта основного общего образования и примерной программы основного общего образования ...

Рабочая программа. Геометрия. 7 класс.

Рабочая программа. Геометрия. 7 класс.  А.В.Погорелов....

Рабочая программа. Геометрия. 9 класс.

Рабочая программа. Геометрия. 9 класс.  А.В.Погорелов....

Рабочая программа 7 класс. Геометрия. 2ч. в неделю, авторы учебника: Геометрия 7-9 классы: учебник для общеобразовательных организаций / Л.С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др

Рабочая программа составлена для 7 классов базового уровня изучения предмета Геометрия общеобразовательных учреждений. Содержит разделы: аннотация, цели, учебно- тематический план, планируемые результ...