Рабочая программа по геометрии 7 - 9 класс по учебнику Атанасяна
рабочая программа по геометрии (7 класс) на тему
В данной раых зработке вы найдете: пояснительную записку, предметные результаты освоения учебого предмета, содержание урса геометрии, тематическое планирование с опреелением основных видов учебной деятельности и планируемые результаты изучения курса
Скачать:
Вложение | Размер |
---|---|
rabochaya_programma_po_geometrii_7_klass.doc | 184 КБ |
Предварительный просмотр:
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.
Рабочая программа по геометрии для 7 класса составлена в соответствии с Федеральным государственным образовательным стандартом основного общего образования второго поколения, на основе примерной Программы основного общего образования по математике, Программы по геометрии для 7–9 классов общеобразовательных школ к учебнику Л.С. Атанасяна и др. (М.: Просвещение, 2013). Данная рабочая программа полностью отражает базовый уровень подготовки школьников по разделам программы. В ходе преподавания геометрии в 7 классе, работы над формированием у учащихся универсальных учебных действий следует обращать внимание на то, чтобы они овладевали умениями общеучебного характера, разнообразными способами деятельности, приобретали опыт:
• планирования и осуществления алгоритмической деятельности, выполнения заданных и конструирования новых алгоритмов;
• решения разнообразных классов задач из различных разделов курса, в том числе задач, требующих поиска пути и способов решения;
• исследовательской деятельности, развития идей, проведения экспериментов, обобщения, постановки и формулирования новых задач;
• ясного, точного, грамотного изложения своих мыслей в устной и письменной речи, использования различных языков математики (словесного, символического, графического), свободного перехода с одного языка на другой для иллюстрации, интерпретации, аргументации и доказательства;
• проведения доказательных рассуждений, аргументации, выдвижения гипотез и их обоснования;
• поиска, систематизации, анализа и классификации информации, использования разнообразных информационных источников, включая учебную и справочную литературу, современные информационные технологии.
Общая характеристика предмета
Геометрия является одним из опорных предметов основной школы: она обеспечивает изучение не только математических предметов, но и смежных дисциплин.
В результате освоения курса геометрии 7 класса учащиеся получают представление об основных фигурах на плоскости и их свойствах; приобретают навыки геометрических построений, необходимые для выполнения часто встречающихся графических работ, а также навыки измерения и вычисления длин, углов, применяемые для решения разнообразных геометрических и практических задач.
В курсе геометрии 7 класса можно выделить следующие содержательно-методические линии: «Геометрические фигуры», «Измерение геометрических величин».
Линия «Геометрические фигуры» нацелено на получение конкретных знаний о геометрической фигуре как важнейшей модели для описания окружающей реальности, а также способствует развитию логического мышления путем систематического изучения свойств геометрических фигур на плоскости и применении этих свойств при решении задач на доказательство и на построение с помощью циркуля и линейки.
Содержание раздела «Измерение геометрических величин» нацелено на приобретение практических навыков, необходимых в повседневной жизни, а также способствует формированию у учащихся функциональной грамотности – умения воспринимать и критически анализировать информацию, представленную в различных формах.
Цели и задачи
Обучение математике в основной школе направлено на достижение следующих целей:
1. В направлении личностного развития:
• развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;
• формирование у учащихся интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;
• воспитание качеств личности, обеспечивающих социальную мобильность, способность принимать самостоятельные решения;
• формирование качеств мышления, необходимых для адаптации в современном информационном обществе;
•развитие интереса к математическому творчеству и математических способностей.
2. В метапредметном направлении:
• формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;
• развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;
• формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности.
3. В предметном направлении:
• овладение математическими знаниями и умениями, необходимыми для продолжения обучения в старшей школе или иных общеобразовательных учреждениях, изучения смежных дисциплин, применения в повседневной
жизни;
• создание фундамента для математического развития, формирования механизмов мышления, характерных для математической деятельности.
На протяжении изучения материала предполагается закрепление и отработка основных умений и навыков, их совершенствование, а также систематизация полученных ранее знаний. Таким образом, решаются следующие задачи:
• введение терминологии и отработка умения ее грамотного использования;
• развитие навыков изображения планиметрических фигур и простейших геометрических конфигураций;
• совершенствование навыков применения свойств геометрических фигур как опоры при решении задач;
• формирование умения доказывать равенство данных треугольников;
• отработка навыков решения простейших задач на построение с помощью циркуля и линейки;
• формирование умения доказывать параллельность прямых с использованием соответствующих признаков, находить равные углы при параллельных прямых, что находит широкое применение в дальнейшем курсе геометрии;
• расширение знаний учащихся о треугольниках.
Место в учебном плане: базисный учебный (образовательный план) на изучение геометрии в 7 классе основной школе отводит 2 учебных часа в неделю в течение 35 недель обучения, всего 68 уроков (учебных занятий). Предусмотрены 5 тематических контрольных работ и 1 итоговая. Выбор данной авторской программы и УМК обусловлен соответствием требованиям ФГОС по математике основной школы.
I. ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА
Программа обеспечивает достижения следующих результатов освоения образовательной программы основного общего образования:
личностные:
- формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
- формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- формирование коммуникативной компетентности и общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
- умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- креативность мышления, инициативу, находчивость, активность при решении геометрических задач;
- умение контролировать процесс и результат учебной математической деятельности;
- способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
метапредметные:
регулятивные универсальные учебные действия:
- умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- умение осуществлять контроль по результату и способу действия на уровне произвольного внимания и вносить необходимые коррективы;
- умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, ее объективную трудность и собственные возможности ее решения;
- понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
познавательные универсальные учебные действия:
- осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
- умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
- умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
- формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
- формирование первоначальных представлений об идеях и о методах математики как универсальном языке науки и техники, средстве моделирования явлений и процессов;
- умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;
- умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
коммуникативные универсальные учебные действия:
- умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы;
- умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов;
- слушать партнера;
- формулировать, аргументировать и отстаивать свое мнение;
предметные:
- овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (геометрическая фигура, величина) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
- умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
- овладение навыками устных письменных, инструментальных вычислений;
- овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
- усвоение систематических знаний о плоских фигурах и их свойствах, умение применять систематические знания о них для решения геометрических и практических задач;
- умение измерять длины отрезков, величины углов;
- умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочные материалы и технические средства.
II. СОДЕРЖАНИЕ КУРСА
7 класс
№ п/п | Наименование разделов и тем | Всего часов | Контрольные работы. |
1 | Начальные геометрические сведения | 11 | 1 |
2 | Треугольники | 18 | 1 |
3 | Параллельные прямые | 13 | 1 |
4 | Соотношение между сторонами и углами треугольника | 20 | 2 |
5 | Повторение. Решение задач | 6 | 0 |
Итого: | 68 | 5 |
1. Начальные геометрические сведения
Простейшие геометрические фигуры: прямая, точка, отрезок, луч, угол. Понятие равенства геометрических фигур. Сравнение отрезков и углов. Измерение отрезков, длина отрезка. Измерение углов, градусная мера угла. Смежные и вертикальные углы, их свойства. Перпендикулярные прямые.
Основная цель - систематизировать знания учащихся о простейших геометрических фигурах и их свойствах; ввести понятие равенства фигур.
В данной теме вводятся основные геометрические понятия и свойства простейших геометрических фигур на основе наглядных представлений учащихся путем обобщения очевидных или известных из курса математики 1 – 6 классов геометрических фактов. Понятие аксиомы на начальном этапе обучения не вводится, и сами аксиомы не формулируются в явном виде. Необходимые исходные положения, на основе которых изучаются свойства геометрических фигур, приводятся в описательной форме. Принципиальным моментом данной темы является введение понятия равенства геометрических фигур на основе наглядного понятия наложения. Определенное внимание должно уделяться практическим приложениям геометрических понятий.
2. Треугольники
Треугольник. Признаки равенства треугольников. Перпендикуляр к прямой. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства. Задачи на построение с помощью циркуля и линейки.
Основная цель - ввести понятие теоремы; выработать умение доказывать равенство треугольников с помощью изученных признаков; ввести новый класс задач - на построение с помощью циркуля и линейки.
Признаки равенства треугольников являются основным рабочим аппаратом всего курса геометрии. Доказательство большей части теорем курса и также решение многих задач проводится по следующей схеме: поиск равных треугольников - обоснование их равенства с помощью какого-то признака - следствия, вытекающие из равенства треугольников. Применение признаков равенства треугольников при решении задач дает возможность постепенно накапливать опыт проведения доказательных рассуждений. На начальном этапе изучения и применения признаков равенства треугольников целесообразно использовать задачи с готовыми чертежами.
3. Параллельные прямые
Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.
Основная цель - ввести одно из важнейших понятий понятие параллельных прямых; дать первое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.
Признаки и свойства параллельных прямых, связанные с углами, образованными при пересечении двух прямых секущей (накрест лежащими, односторонними, соответственными), широко используются в дальнейшем при изучении четырехугольников, подобных треугольников, при решении задач, а также в курсе стереометрии.
4. Соотношения между сторонами и углами треугольника
Сумма углов треугольника. Соотношение между сторонами и углами треугольника. Неравенство треугольника. Прямоугольные треугольники, их свойства и признаки равенства. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Построение треугольника по трем элементам.
Основная цель - рассмотреть новые интересные и важные свойства треугольников. В данной теме доказывается одна из важнейших теорем геометрии - теорема о сумме углов треугольника. Она позволяет дать классификацию треугольников по углам (остроугольный, прямоугольный, тупоугольный), а также установить некоторые свойства и признаки равенства прямоугольных треугольников.
Понятие расстояния между параллельными прямыми вводится на основе доказанной предварительно теоремы о том, что все точки каждой из двух параллельных прямых равноудалены от другой прямой. Это понятие играет важную роль, в частности используется в задачах на построение.
При решении задач на построение в 7 классе следует ограничиться только выполнением и описанием построения искомой фигуры. В отдельных случаях можно провести устно анализ и доказательство, а элементы исследования должны присутствовать лишь тогда, когда это оговорено условием задачи.
- Повторение. Решение задач
III. Тематическое планирование с определением основных видов учебной деятельности
Основное содержание по темам | Характеристика основных видов деятельности |
Начальные геометрические сведения. | - Обозначать точки и прямые на рисунке; - показать внутреннюю и внешнюю области неразвернутого угла; - сравнивать отрезки и углы; - измерять отрезки; - пользоваться приборами для измерения углов на местности; - пользоваться геометрическими языком для описания окружающих предметов; - измерять углы и строить биссектрису угла с помощью транспортира; - строить угол, смежный с данным углом; - изображать вертикальные углы; - находить на рисунке смежные и вертикальные углы; - строить перпендикулярные прямые с помощью чертёжного треугольника; - решать задачи на нахождение смежных углов и углов, образованных при пересечении двух прямых; - выполнять чертежи по условию задачи; |
Треугольники | - объяснять какая фигура называется треугольником, называть его элементы, изображать треугольники, распознавать их на чертежах, моделях и в текущей обстановке; - решать задачи на нахождение периметра треугольника и доказательство равенства треугольников с использованием первого признака равенства треугольников при нахождении углов и сторон соответственно равных треугольников; - строить и распознавать медианы, высоты и биссектрисы треугольника, решать задачи, используя изученные свойства равнобедренного треугольника; - объяснять, что такое центр, радиус, хорда, диаметр, дуга окружности; - выполнять с помощью циркуля и линейки простейшие построения: отрезка, равного данному; биссектрисы данного угла; прямой, проходящей через данную точку, перпендикулярно прямой; середины данного отрезка, угла, равного данному; - решать несложные задачи на построение с помощью циркуля и линейки; |
Параллельные прямые | - распознавать на рисунке пары накрест лежащих, односторонних, соответственных углов; - строить параллельные прямые с помощью чертёжного треугольника и линейки; - при решении задач доказывать параллельность прямых, опираясь на изученные признаки; - использовать признаки параллельности прямых при решении задач на готовых чертежах; - по условию задачи выполнять чертёж, в ходе решения задач доказывать параллельность прямых |
Соотношения между сторонами и углами треугольника | - изображать внешний угол треугольника, остроугольный, прямоугольный, тупоугольный треугольники; - решать задачи, используя теорему о сумме углов треугольника и её следствия, обнаруживая возможность их применения; - сравнивать углы, стороны треугольника, опираясь на соотношения между сторонами и углами треугольника; - решать задачи, используя признак равнобедренного треугольника и теорему о неравенстве треугольника; - применять свойства и признаки равенства прямоугольных треугольников при решении задач; - использовать приобретённые знания и умения в практической деятельности и повседневной жизни для описания реальных ситуаций на языке геометрии, решения практических задач; - решать задачи на нахождение расстояния от точки до прямой и расстояния между параллельными прямыми, используя изученные свойства и понятия; - строить треугольник по двум сторонам и углу между ними, стороне и двум прилежащим к ней углам, трём сторонам, используя циркуль и линейку; - решать задачи, опираясь на теорему о сумме углов треугольников; свойства внешнего угла треугольника; признаки равнобедренного треугольника; - решать несложные задачи на построение с использованием известных алгоритмов |
Повторение | - решать задачи и проводить доказательные рассуждения , используя известные теоремы, обнаруживая возможности их применения; - использовать приобретённые знания и умения в практической деятельности и повседневной жизни для описания реальных ситуаций на языке геометрии, для решения практических задач. |
8 класс
№ п/п | Наименование раздела | Количество часов |
Повторение курса геометрии 7 класса | 2 | |
Четырехугольники | 14 | |
Площадь | 14 | |
Подобные треугольники | 20 | |
Окружность | 16 | |
Повторение. Решение задач | 2 | |
Итого | 68 |
- Повторение курса геометрии 7 класса
- Четырехугольники
Многоугольник, выпуклый многоугольник, четырехугольник. Параллелограмм, его свойства и признаки. Трапеция. Прямоугольник, ромб, квадрат, их свойства. Осевая и центральная симметрии.
Основная цель – изучить наиболее важные виды четырехугольников — параллелограмм, прямоугольник, ромб, квадрат, трапецию; дать представление о фигурах, обладающих осевой или центральной симметрией.
Доказательства большинства теорем данной темы и решения многих задач проводятся с помощью признаков равенства треугольников, поэтому полезно их повторить, в начале изучения темы.
Осевая и центральная симметрии вводятся не как преобразование плоскости, а как свойства геометрических фигур, в частности четырехугольников. Рассмотрение этих понятий как движений плоскости состоится в 9 классе.
- Площадь
Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.
Основная цель – расширить и углубить полученные в 5—6 классах представления обучающихся об измерении и вычислении площадей; вывести формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; доказать одну из главных теорем геометрии — теорему Пифагора.
Вывод формул для вычисления площадей прямоугольника, параллелограмма, треугольника, трапеции основывается на двух основных свойствах площадей, которые принимаются исходя из наглядных представлений, а также на формуле площади квадрата, обоснование которой не является обязательным для обучающихся.
Нетрадиционной для школьного курса является теорема об отношении площадей треугольников, имеющих по равному углу. Она позволяет в дальнейшем дать простое доказательство признаков подобия треугольников. В этом состоит одно из преимуществ, обусловленных ранним введением понятия площади. Доказательство теоремы Пифагора основывается на свойствах площадей и формулах для площадей квадрата и прямоугольника. Доказывается также теорема, обратная теореме Пифагора.
- Подобные треугольники
Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.
Основная цель – ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применения; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.
Определение подобных треугольников дается не на основе преобразования подобия, а через равенство углов и пропорциональность сходственных сторон.
Признаки подобия треугольников доказываются с помощью теоремы об отношении площадей треугольников, имеющих по равному углу.
На основе признаков подобия доказывается теорема о средней линии треугольника, утверждение о точке пересечения медиан треугольника, а также два утверждения о пропорциональных отрезках в прямоугольном треугольнике. Дается представление о методе подобия в задачах на построение.
В заключение темы вводятся элементы тригонометрии — синус, косинус и тангенс острого угла прямоугольного треугольника.
- Окружность
Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство и признак. Центральные и вписанные углы. Четыре замечательные точки треугольника. Вписанная и описанная окружности.
Основная цель – расширить сведения об окружности, полученные учащимися в 7 классе; изучить новые факты, связанные с окружностью; познакомить обучающихся с четырьмя замечательными точками треугольника.
В данной теме вводится много новых понятий и рассматривается много утверждений, связанных с окружностью. Для их усвоения следует уделить большое внимание решению задач.
Утверждения о точке пересечения биссектрис треугольника и точке пересечения серединных перпендикуляров к сторонам треугольника выводятся как следствия из теорем о свойствах биссектрисы угла и серединного перпендикуляра к отрезку. Теорема о точке пересечения высот треугольника (или их продолжений) доказывается с помощью утверждения о точке пересечения серединных перпендикуляров.
Наряду с теоремами об окружностях, вписанной в треугольник и описанной около него, рассматриваются свойство сторон описанного четырехугольника и свойство углов вписанного четырехугольника.
- Повторение. Решение задач
Основное содержание по темам | Характеристика основных видов деятельности |
Повторение курса геометрии 7 класса (2 часа) | |
Четырехугольники (14 часов) | Объяснить, что такое ломанная, многоугольник, его вершины, смежные стороны, диагонали, изображать и распознавать многоугольники на чертежах; показывать элементы многоугольника, его внутреннюю и внешнюю области; формулировать определение выпуклого многоугольника; изображать и распознавать выпуклые и невыпуклые многоугольники; формулировать и доказывать утверждения о сумме углов выпуклого многоугольника и сумме его внешних углов; объяснять, какие стороны (вершины) четырёхугольника называются противоположными; формулировать определения параллелограмма, трапеции, равнобедренной и прямоугольной трапеций, прямоугольника, ромба, квадрата; изображать и распознавать эти четырёхугольники; формулировать и доказывать утверждения об их свойствах и признаках; решать задачи на вычисление, доказательство и построение, связанные с этими видами четырёхугольников; объяснять, какие две точки называются симметричными относительно прямой (точки), в каком случае фигура называется симметричной относительно прямой (точки) и что такое ось (центр) симметрии фигуры; приводить примеры фигур, обладающих осевой (центральной) симметрией, а также примеры осевой и центральной симметрий в окружающей нас обстановке |
Площадь (14 часов) | Объяснить, как производится измерение площадей многоугольников, какие многоугольники называются равновеликими и какие равносоставленными; формулировать свойства площадей и выводить с их помощью формулы площадей прямоугольника, параллелограмма, треугольника, трапеции; формулировать и доказывать теорему об отношении площадей треугольников, имеющих по равному углу; формулировать и доказывать теорему Пифагора и обратную ей; выводить формулу Герона для площади треугольника; решать задачи на вычисление и доказательство, связанные с формулами площадей и теоремой Пифагора |
Подобные треугольники (20 часов) | Объяснять понятие пропорциональности отрезков; формулировать определения подобных треугольников и коэффициента подобия; формулировать и доказывать теоремы: об отношении площадей подобных треугольников, о признаках подобия треугольников, о средней линии треугольника, о пересечении медиан треугольника, о пропорциональных отрезках в прямоугольном треугольнике; объяснять, что такое метод подобия в задачах на построение, и приводить примеры применения этого метода; объяснять, как можно использовать свойства подобных треугольников в измерительных работах на местности; объяснить, как ввести понятие подобия для произвольных фигур; формулировать определения и иллюстрировать понятие синуса, косинуса и тангенса острого угла прямоугольного треугольника; выводить основное тригонометрическое тождество и значения синуса, косинуса и тангенса для углов 300, 450, 600; решать задачи, связанные с подобием треугольников, для вычисления значений тригонометрических функций использовать компьютерные программы |
Окружность (16 часов) | Исследовать взаимное расположение прямой и окружности; формулировать определение касательной к окружности; формулировать и доказывать теоремы: о свойстве касательной, о признаке касательной, об отрезках касательных, проведенных из одной точки; формулировать понятие центрального угла и градусной меры дуги окружности; формулировать и доказывать теоремы: о вписанном угле, о произведении отрезков пересекающихся хорд; формулировать и доказывать теоремы, связанные с замечательными точками треугольника: о биссектрисе угла, и как следствие, о пересечении биссектрис треугольника; о серединном перпендикуляре к отрезку и, как следствие, о пересечении серединных перпендикуляров к сторонам треугольника; о пересечении высот треугольника; формулировать определения окружностей, вписанной в многоугольник и описанной около многоугольника; формулировать и доказывать теоремы: об окружности, вписанной в треугольник; об окружности, описанной около треугольника; о свойстве сторон описанного четырехугольника; о свойстве углов вписанного четырёхугольника; решать задачи на вычисление, доказательство и построение, связанные с окружностью, вписанными и описанными треугольника и четырёхугольниками; исследовать свойства конфигураций, связанных с окружностью, с помощью компьютерных программ |
Повторение (2 часа) |
9 класс
№ п/п | Наименование раздела | Количество часов |
Повторение курса геометрии 8 класса | ||
Векторы | ||
Метод координат | ||
Соотношение между сторонами и углами треугольника. Скалярное произведение векторов | ||
Длина окружности и площадь круга | ||
Движения | ||
Начальные сведения из стереометрии | ||
Об аксиомах планиметрии | ||
Повторение. Решение задач |
- Повторение курса геометрии 8 класса
- Векторы. Метод координат
Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.
Основная цель – научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач.
Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т.е. как действия с направленными отрезками. Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, равный произведению данного вектора на данное число).
На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.
- Соотношения между сторонами и углами треугольника. Скалярное произведение векторов.
Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.
Основная цель – развить умение применять тригонометрический аппарат при решении геометрических задач.
Синус и косинус любого угла от 00 до 1800 вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и вводится ещё одна формула площади треугольника (половина произведение двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.
Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.
Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.
- Длина окружности и площадь круга
Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.
Основная цель – расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления.
В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 2n-угольника, если дан правильный n-угольник.
Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь - к площади круга, ограниченного окружностью.
- Движения
Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения.
Основная цель – познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.
Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрение видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффективных примерах показывается применение движений при решении геометрических задач.
Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятие наложения и движения является эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.
- Об аксиомах геометрии
Беседа об аксиомах геометрии.
Основная цель – дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе.
В данной теме рассказывается о различных системах аксиом геометрии, в частности о различных способах введения понятия равенства фигур.
- Начальные сведения из стереометрии
Предмет стереометрии. Геометрические тела и поверхности. Многогранники: призма, параллелепипед, пирамида, формулы для вычисления их объемов. Тела и поверхности вращения: цилиндр, конус, сфера, шар, формулы для вычисления их площадей поверхностей и объемов.
Основная цель – дать начальное представление о телах и поверхностях в пространстве; познакомить учащихся с основными формулами для вычисления площадей поверхностей и объемов тел.
Рассмотрение простейших многогранников (призмы, параллелепипеда, пирамиды), а также тел и поверхностей вращения (цилиндра, конуса, сферы, шара) проводится на основе наглядных представлений, без привлечения аксиом стереометрии. Формулы для вычисления объемов указанных тел выводятся на основе принципа Кавальери, формулы для вычисления площадей боковых поверхностей цилиндра и конуса получаются с помощью разверток этих поверхностей, формула площади сферы приводится без основания.
- Повторение. Решение задач.
Основное содержание по темам | Характеристика основных видов деятельности |
Повторение курса геометрии 8 класса | |
Векторы | Формулировать определения и иллюстрировать понятия вектора, его длины, коллинеарных и равных векторов; мотивировать введение понятий и действий, связанных с векторами, соответствующими примерами, относящимися к физическим векторным величинам; применять векторы и действия над ними при решении геометрических задач |
Метод координат | Объяснять и иллюстрировать понятия прямоугольной системы координат точки и координат вектора; выводить и использовать при решении задач формулы координат середины отрезка, длинны вектора, расстояния между двумя точками, уравнения окружности и прямой |
Соотношение между сторонами и углами треугольника. Скалярное произведение векторов | Формулировать и иллюстрировать определения синуса, косинуса, тангенса и котангенса углов от 0 до 180°; выводить основное тригонометрическое тождество и формулы приведения; формулировать и доказывать теоремы синусов и косинусов, применять их при решении треугольников; объяснять, как используются тригонометрические формулы в измерительных работах на местности; формулировать определения угла между векторами и скалярного произведения векторов; выводить формулу скалярного произведения через координаты векторов; формулировать и обосновывать утверждение о свойствах скалярного произведения; использовать скалярное произведение векторов при решении задач |
Длина окружности и площадь круга | Формулировать определение правильного многоугольника; формулировать и доказывать и доказывать теоремы об окружностях, описанной около правильного многоугольника и вписанной в него; выводить и использовать формулы для вычисления площади правильного многоугольника, его стороны и радиуса вписанной окружности; решать задачи на построение правильных многоугольников; объяснять понятия длины окружности и площади круга; выводить формулы для вычисления длины окружности и длины дуги, площади круга и площади кругового сектора; применять эти формулы при решении задач |
Движение | Объяснять, что такое отображение плоскости на себя и в каком случае оно называется движением плоскости; объяснять, что такое осевая симметрия, центральная симметрия, параллельный перенос и поворот; обосновывать, что эти отображения плоскости на себя являются движениями; объяснять, какова связь между движениями и наложениями; иллюстрировать основные виды движений, в том числе с помощью компьютерных программ |
Начальные сведения из стереометрии | Объяснять, что такое многогранник, его грани, рёбра, вершины, диагонали, какой многогранник называется выпуклым, что такое n-угольная призма, её основания, боковые грани и боковые рёбра, какая призма называется прямой и какая наклонной, что такое высота призмы, какая призма называется параллелепипедом и какой параллелепипед называется прямоугольным; формулировать и обосновывать утверждения о свойстве диагоналей параллелепипеда и о квадрате диагонали прямоугольного параллелепипеда; объяснять, что такое объём многогранника; выводить (с помощью принципа Кавальери) формулу объёма прямоугольного параллелепипеда; объяснять, какой многогранник называется пирамидой, что такое основание, вершина, боковые грани, боковые рёбра и высота пирамиды, какая пирамида называется правильной, что такое апофема правильной пирамиды, приводить формулу объёма пирамиды; объяснять, какое тело называется цилиндром, что такое его ось, высота, основания, радиус, боковая поверхность, образующие, развёртка боковой поверхности, какими формулами выражаются объём и площадь боковой поверхности цилиндра; объяснять, какое тело называется конусом, что такое его ось, высота, основание, боковая поверхность, образующие, развёртка боковой поверхности, какими формулами выражаются объём конуса и площадь боковой поверхности; объяснять, какая поверхность называется сферой и какое тело называется шаром, что такое радиус и диаметр сферы (шара), какими формулами выражаются объём шара и площадь сферы; изображать и распознавать на рисунках призму, параллелепипед, пирамиду, цилиндр, конус, шар |
Об аксиомах планиметрии | |
Повторение куса геометрии 7- 9 классов |
Учебно-методическое обеспечение.
- Методические и учебные пособия
- Геометрия: Учеб. Для 7-9 кл. общеобразоват. учреждений/Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – М.: Просвещение, 2013 – 2014 год.
- Геометрия. Сборник рабочих программ. 7 – 9 классы: пособие для учителей общеобразовательных организаций / [автор-составитель Т.А. Бурмистрова. – М.: Просвещение, 2014г.
- Контрольные работы по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / Н.Б. Мельникова. – М.: Издательство «Экзамен», 2014г.
- Тесты по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / А.В. Фарков. – М.: Издательство «Экзамен», 2014г.
- Дидактические материалы по геометрии: 7 класс: к учебнику Л.С. Атанасяна и др. «Геометрия 7 – 9 классы» / Н.Б. Мельникова, Г.А. Захарова. – М.: Издательство «Экзамен», 2014г.
- Дидактический материал
- Карточки для индивидуального опроса учащихся по всем темам курса.
- Интернет-ресурсы
- Презентации в программе PowerPoint.
- Учебно-лабораторное оборудование
- Мультимедийный компьютер
- Мультимедиа проектор
- Интерактивная доска
- Комплект инструментов классных: линейка, транспортир, угольник (300, 600), угольник (450, 450), циркуль.
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА
Наглядная геометрия
Выпускник научится:
- распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
- распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
- определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
- вычислять объём прямоугольного параллелепипеда.
Выпускник получит возможность:
- вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
- углубить и развить представления о пространственных геометрических фигурах;
- применять понятие развёртки для выполнения практических расчётов.
Геометрические фигуры
Выпускник научится:
- пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
- распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
- находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 00 до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
- оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
- решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
- решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
- решать простейшие планиметрические задачи в пространстве.
Выпускник получит возможность:
- овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подобия, методом перебора вариантов и методом геометрических мест точек;
- приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
- овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
- научиться решать задачи на построение методом геометрического места точек и методом подобия;
- приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
- приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле».
Измерение геометрических величин
Выпускник научится:
- использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
- вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур;
- вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
- вычислять длину окружности, длину дуги окружности;
- решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
- решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).
Выпускник получит возможность:
- вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
- вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
- приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.
Координаты
Выпускник научится:
- вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
- использовать координатный метод для изучения свойств прямых и окружностей.
Выпускник получит возможность:
- овладеть координатным методом решения задач на вычисление и доказательство;
- приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
5) приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисление и доказательство».
Векторы
Выпускник научится:
- оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
- находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
- вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.
Выпускник получит возможность:
- овладеть векторным методом для решения задач на вычисление и доказательство;
- приобрести опыт выполнения проектов на тему «Применение векторного метода при решении задач на вычисление и доказательство».
По теме: методические разработки, презентации и конспекты
Рабочая программа литература 7 класс по учебнику Коровина В.Я. Программа расчитана на 68 часов
Рабочая программа литература 7 класс по учебнику Коровина В.Я. Программа расчитана на 68 часов...
Рабочая программа по геометрии 7-9 (учебник Атанасяна)
Рабочая программа содержит пояснительную записку, содержание тем, календарно-тематическое планирование, презентации к урокам 8 класс...
Рабочая программа для 8 класса к учебнику Атанасяна
Рабочая программа по геометрии для обучающихся 8 класса разработана в соответствии с основными положениями Федерального государственного стандарта и требованиями Примерной образовательной программы ос...
Рабочая программа для 10 класса к учебнику Атанасяна
Рабочая программа по геометрии для обучающихся 10 класса разработана в соответствии с примерной программой среднего (полного) общего образования по математике (письмо Департамента государственной поли...
Рабочая программа по геометрии 7класса ( по учебнику Л.С.Атанасяна, В.Ф.Бутузова и др.)
Рабочая программа по геометрии 7класса разработана на 2014-2015учебный год, она состоит из пояснительной записки, краткого курса геометрии 7класса, тематического планирования и календарно-тематическог...
Рабочая программа для 9 класса по учебнику "Английский в фокусе" Spotlight 9 Авторы: Ю.Е. Ваулина, Дж.Дули, О.Е.Подоляко, В.Эванс и календарно-тематическое планирование к программе 2019-2020
Рабочая программа для 9 класса по учебнику "Английский в фокусе" Spotlight 9 Авторы: Ю.Е. Ваулина, Дж. Дули, О.Е. Подоляко, В.Эванс.Программа составлена на основе Фундаментального ядра содер...
Рабочая программа для 6 класса по учебнику "Немецкий язык 6 класс" Авторы: И.Л.Бим, Л.В.Садомова, Л.М.Санникова
Рабочая программа и календарно-тематическое планирование. Немецкий язык 6 класс. Авторы: И.Л. Бим, Л.В.Садомова, Л.М.Санникова. Москва.Просвещение.2012 г...