Задачи на построение сечений. 10-й класс
план-конспект урока по геометрии (10 класс) на тему

Ефремова Наталья Валерьевна

Задачи на построение сечений. 10-й класс

Цели урока:

·         Образовательные:дальнейшее формирование у учащихся умений построения сечений тетраэдра и параллелепипеда различными плоскостями; закрепление алгоритма построения сечений и отработка навыков построения сечений многогранников;

·         Воспитательные: воспитание чувства взаимопомощи, умения работать индивидуально над поставленными задачами, воспитание интереса к предмету и потребности в приобретении знаний;

·         Развивающие: развитие у учащихся пространственного воображения, развитие графической культуры и математической речи.

Задачи урока: научиться строить сечения тетраэдра и параллелепипеда различными плоскостями.

Тип урока: урок формирования и совершенствования знаний.

Формы организации учебной деятельности: фронтальная, работа в парах, индивидуальная.

Техническое обеспечение урока: мультимедийный проектор, модели многогранников.

Скачать:

ВложениеРазмер
Файл secheniya14.05.rar875.69 КБ

Предварительный просмотр:

Задачи на построение сечений. 10-й класс

Цели урока:

  • Образовательные:дальнейшее формирование у учащихся умений построения сечений тетраэдра и параллелепипеда различными плоскостями; закрепление алгоритма построения сечений и отработка навыков построения сечений многогранников;
  • Воспитательные: воспитание чувства взаимопомощи, умения работать индивидуально над поставленными задачами, воспитание интереса к предмету и потребности в приобретении знаний;
  • Развивающие: развитие у учащихся пространственного воображения, развитие графической культуры и математической речи.

Задачи урока: научиться строить сечения тетраэдра и параллелепипеда различными плоскостями.

Тип урока: урок формирования и совершенствования знаний.

Формы организации учебной деятельности: фронтальная, работа в парах, индивидуальная.

Техническое обеспечение урока: мультимедийный проектор, модели многогранников.

План урока:

1. Организационный момент.
2. Актуализация опорных знаний.
3. Изучение нового  материала.
4. Закрепление изученного материала.
5. Подведение итогов урока.
6. Домашнее задание.

ХОД ЗАНЯТИЯ

1. Организационный момент

Сообщение темы, цели и задач урока учащимся. Выяснить были ли трудности с выполнением домашней работы.

2. Актуализация опорных знаний

Устная фронтальная  работа по вопросам теории данной темы, с целью  актуализации знаний учащихся. Повторение изученного материала: аксиом стереометрии, следствий из аксиом, способов задания плоскостей, терминов и определений, связанных с тетраэдром и параллелепипедом.

Вопросы:

1) Какие многогранники вы знаете? Назовите, покажите их модели.
2) Дайте определение тетраэдра.
3) Назовите элементы тетраэдра, показывая их на модели.
4) Дайте определение параллелепипеда.
5) Назовите элементы параллелепипеда, показывая их на модели.
6) Сформулируйте свойства, которыми обладает параллелепипед.
7) Сколько необходимо точек, чтобы провести прямую на плоскости?
8) Какая фигура получается при пересечении двух плоскостей? 
8) Сформулируйте аксиомы стереометрии о взаимном расположении точек, прямых и плоскостей в пространстве. 
9) Сформулируйте свойство параллельных плоскостей.

Демонстрация иллюстраций аксиом стереометрии и свойств параллельных плоскостей в презентации к уроку. (Слайды 2, 3, 4)

3. Изучение нового материала

1) Определение секущей плоскости

Секущей плоскостью многогранника называют такую плоскость, по обе стороны от которой имеются точки данного многогранника.

2) Сечения тетраэдра и параллелепипеда

Так как тетраэдр имеет четыре грани, то его сечениями могут быть треугольники и четырехугольники. Параллелепипед имеет шесть граней, поэтому его сечениями могут быть треугольники, четырехугольники, пятиугольники и шестиугольники.

Демонстрация сечений тетраэдра и параллелепипеда. (Слайд 5)

3) Свойство параллельных плоскостей: если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны, сформулировать следующим образом: если секущая плоскость пересекает две противоположные грани по каким-то отрезкам, то эти отрезки параллельны.

4) Алгоритм построения сечений многогранников:

а) определить грани, с которыми секущая плоскость имеет две общие точки, и провести через данные точки прямые; 
б) определить грани, с которыми секущая плоскость имеет одну общую точку, построить вторую общую точку и провести через них прямую; 
в) определить грани, с которыми секущая плоскость не имеет общих точек, построить две общие точки,  и провести через них прямую; 
г) выделить отрезки прямых, по которым секущая плоскость пересекает ребра многогранника, заштриховать полученный многоугольник.

5) Примеры построения сечений тетраэдра и параллелепипеда

Демонстрация презентации с решениями задач №1 и №2, где учитель подробно объясняет каждый пункт построения сечений. (Слайд  6. Слайд  7)

Задача №1. Построить сечение тетраэдра  SABC плоскостью, проходящей через точки D, E, К, где Dhttp://festival.1september.ru/articles/593664/img2.gifAB, Ehttp://festival.1september.ru/articles/593664/img2.gifSA,  Khttp://festival.1september.ru/articles/593664/img2.gifSС.

Задача №2. Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки Р, К, М, где Phttp://festival.1september.ru/articles/593664/img2.gifD1C1, Khttp://festival.1september.ru/articles/593664/img2.gifA1D1,  Мhttp://festival.1september.ru/articles/593664/img2.gifВС.

4. Закрепление изученного материала

1) Устная работа

Учащимся предлагается фронтально решить задачу №3, представленную в презентации. На экране в каждом пункте построения сечения появляется несколько вариантов действий, только один из них правильный, если выбран неверный вариант – с помощью гиперссылки возврат назад. (Слайды 8-27).

Задача №3. Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки  Т, Н, М, где Тhttp://festival.1september.ru/articles/593664/img2.gifСС1, Нhttp://festival.1september.ru/articles/593664/img2.gifDD1, Мhttp://festival.1september.ru/articles/593664/img2.gifАВ.
2)  Решение задач на построение сечений

Для решения задач №4, №5, №6 и №7 чертежи  тетраэдра и параллелепипеда подготовлены  заранее на отдельных листах.
Один учащийся решает задачу №4 с помощью мультимедийного проектора, комментируя и объясняя последовательность построения сечения, а все остальные вместе с ним строят сечение на готовых чертежах.
(Слайд 28)

Задача №4. Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через данные точки  Е, F, K, где Еhttp://festival.1september.ru/articles/593664/img2.gifАА1, Fhttp://festival.1september.ru/articles/593664/img2.gifА1B1, Khttp://festival.1september.ru/articles/593664/img2.gifB1C1.
Задачи №5 и №6 учащиеся выполняют самостоятельно в парах на готовых чертежах, проверка построения сечений и обсуждение действий осуществляется с помощью мультимедийного проектора. 
(Слайды 29, 30)

Задача №5.Построить сечение тетраэдра  SABC плоскостью, проходящей через данные точки  К, М, Р, где Кhttp://festival.1september.ru/articles/593664/img2.gifSС, Мhttp://festival.1september.ru/articles/593664/img2.gifSА,  Рhttp://festival.1september.ru/articles/593664/img2.gifАВС.

Задача №6. Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки  К, L, М, где Кhttp://festival.1september.ru/articles/593664/img2.gifB1C1, L http://festival.1september.ru/articles/593664/img2.gifАА1, Мhttp://festival.1september.ru/articles/593664/img2.gifAD .

3)  Самостоятельная работа на построение сечения

Учащиеся самостоятельно выполняют задачу №7, верно выполнившие задания получают оценки.

Задача №7. Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через данные точки  F, K, L, где Fhttp://festival.1september.ru/articles/593664/img2.gifAD, Khttp://festival.1september.ru/articles/593664/img2.gif D1C1, L http://festival.1september.ru/articles/593664/img2.gifСС1(Слайд 31)
Правильность построения сечения в задаче №7 осуществляется с помощью мультимедийного проектора. 
(Слайд 32)

5. Подведение итогов урока

Повторение алгоритма построения сечений. Оценивание работы учащихся.

Выставить и прокомментировать оценки учащихся. Отметить, с чем учащиеся справились, успешно,  а на что нужно еще обратить внимание.

6. Домашнее задание

п.14. №71(а, б), №72 (а), № 81(а, б)


По теме: методические разработки, презентации и конспекты

«Решение задач на построение сечений многогранников».

Сообщение на РМО учителей математики....

"Тетраэдр. Параллелепипед. Задачи на построение сечений" геометрия 10 класс

Презентация может использоваться при изучении темы, а также при повторении данного материала...

Комплекс задач на развитие пространственного мышления при решении задач на построение сечений многогранников

Задачи на развитие пространственного мышления учащихся 10-11 кл. при решении задач на построение сечений многогранников. Разработан на основе трудов ведущих психологов, с учётом психологической деятел...

Задачи на построение сечений

Задачи на построение сечений...

Урок геометрии в 10 классе «Задачи на построение сечений»

Урок геометрии в 10 классе «Задачи на построение сечений» представляет собой изучение нового материала на основе использования презентации, выполненной в программе Microsoft Power Point. П...

Урок геометрии в 10 классе «Задачи на построение сечений»

Урок геометрии в 10 классе «Задачи на построение сечений» представляет собой изучение нового материала на основе использования презентации, выполненной в программе Microsoft Power Point. П...

задачи на построение сечений 10 класс

презентация к уроку по геометрии в 10 классе "Задачи на построение сечений"...